
AViC: A Cache for Adaptive Bitrate Video
Zahaib Akhtar

University of Southern California
Yaguang Li

University of Southern California
Ramesh Govindan

University of Southern California

Emir Halepovic
AT&T Labs – Research

Shuai Hao
AT&T Labs – Research

Yan Liu
University of Southern California

Subhabrata Sen
AT&T Labs – Research

ABSTRACT
Video dominates Internet traffic today. Users retrieve on-demand
video from Content Delivery Networks (CDNs) which cache video
chunks at front-ends. In this paper, we describe AViC, a caching
algorithm that leverages properties of video delivery, such as re-
quest predictability and the presence of highly unpopular chunks.
AViC’s eviction policy exploits request predictability to estimate a
chunk’s future request time and evict the chunk with the furthest
future request time. Its admission control policy uses a classifier
to predict singletons — chunks evicted before a second reference.
Using real world CDN traces from a commercial video service, we
show that AViC outperforms a range of algorithm including LRU,
GDSF, AdaptSize and LHD. In particular LRU requires up to 3.5×
the cache size to match AViC’s performance. Further, AViC has low
time complexity and has memory complexity comparable to GDSF.

CCS CONCEPTS
• Information systems → Multimedia streaming; • Theory of
computation → Caching and paging algorithms.

KEYWORDS
HTTP Adaptive Bitrate Video, Caching, Content Delivery Networks

ACM Reference Format:
Zahaib Akhtar, Yaguang Li, Ramesh Govindan, Emir Halepovic, Shuai Hao,
Yan Liu, and Subhabrata Sen. 2019. AViC: A Cache for Adaptive Bitrate
Video. In The 15th International Conference on emerging Networking EX-
periments and Technologies (CoNEXT ’19), December 9–12, 2019, Orlando,
FL, USA. ACM, New York, NY, USA, 13 pages. https://doi.org/10.1145/
3359989.3365423

1 INTRODUCTION
Video forms the majority of the Internet traffic today and is likely
to continue its rapid growth in the near future [8, 10]; by one esti-
mate [10], 82% of all IP traffic in 2022 will be video.

Video delivery background. Regardless of the type of network
or device used, most video delivery in the Internet employs adap-
tive streaming. This technique divides a video into chunks each of

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
CoNEXT ’19, December 9–12, 2019, Orlando, FL, USA
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6998-5/19/12. . . $15.00
https://doi.org/10.1145/3359989.3365423

Figure 1: Serving video over the Internet
which has a fixed playback duration. Each chunk is then encoded
at different qualities (or bitrates) that trade-off reduced perceptual
quality for lower network bandwidth. Thus, the term chunk denotes
a segment of video of fixed playback duration encoded at a specific
bitrate. Video content providers (also called publishers [11]) select
parameters for the chunk duration and the bitrates to maximize user
experience over a variety of devices and network conditions.

The video player software on a client device requests successive
chunks from a server, stores retrieved chunks in a playback buffer,
and displays chunks on the device. The player runs an adaptive bi-
trate (ABR) algorithm [12, 28, 35, 43] to determine the bitrate at
which to download a chunk: this decision, usually based on mea-
surements of network state (e.g., available bandwidth), attempts to
deliver the highest quality video to users while minimizing stalls.

The role of CDNs. Video content publishers use CDNs to deliver
video-on-demand1 to end-users [11] (Figure 1). CDNs consist of a
small number of origin servers that store video content and a large
number of front-end servers positioned topologically closer to users.
When a client device requests a chunk of video, the CDN redirects
it to the nearest front-end server, which, in turn, contacts the origin
server for the requested bitrate of the chunk. The front-end server
then caches the chunk to serve subsequent requests. This architecture
enables the CDN to situate content closer to the end user and reduces
response latency. Equally important, front-end servers can serve a
significant fraction of requests from the cache, thereby shielding
origin servers and reducing the CDN’s wide-area bandwidth usage.

Caching algorithms. Given a cache of a fixed size, caching algo-
rithms strive to retain those objects requested often. An object is
the unit of cached information; examples include memory pages,
web pages or video chunks. Caching algorithms achieve this using a
caching policy based on recency (when the object was last accessed),

1In this paper, we focus on video-on-demand; we leave caching policies for live
video to future work.

305

https://doi.org/10.1145/3359989.3365423
https://doi.org/10.1145/3359989.3365423
https://doi.org/10.1145/3359989.3365423
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3359989.3365423&domain=pdf&date_stamp=2019-12-03


CoNEXT ’19, December 9–12, 2019, Orlando, FL, USA Z. Akhtar et al.

frequency (the rate of accesses to the object), object size, or a combi-
nation of these. Earlier caching policies focused on eviction — which
object to remove from the cache when a new object arrives. Recent
work [19] has shown the importance of admission control — de-
ciding whether to admit an object into the cache — especially for
workloads where object sizes vary.

Caching algorithms differ in complexity (the processing time
needed to make a caching decision) and performance (measured
by the cache’s hit ratio, the fraction of requests served from the
cache). In general, higher complexity results in higher performance.
The choice of algorithm design is usually constrained by the request
arrival rate. For instance, operating systems need to make page
replacement decisions at sub-millisecond timescales, so they often
use simple algorithms like Least Recently Used (LRU) eviction. Web
proxies see lower request arrival rates, so they can use slightly more
complex algorithms [21, 22, 44] that take recency, frequency and
size into account in making caching decisions.

Why video caching is different. When a user starts a video session,
they can begin watching from any location in the video, but each
session generally makes forward progress; once a session requests
chunk 𝑘, 𝑘 < 𝑁 , of an 𝑁 -chunk video it is highly likely to request
chunk 𝑘 + 1 soon in the future. In this paper, we argue that caching
algorithms that leverage the properties of video workloads are likely
to be more effective than existing caching algorithms. Earlier algo-
rithms such as LRU (Least Recently Used) and GDSF(Greedy-Dual
Size Frequency) [22], or more recent ones like LHD [15] and Adapt-
Size [19], are designed under the Independent Reference Model
(IRM) [23], which assumes that every request is independent of
others. This assumption does not hold for video. Other work has
leveraged this predictability to pre-fetch chunks from the CDN ori-
gin [34, 39, 42]. However, for the pre-fetching to be effective, the
CDN edge cache must know what bitrate the client will request the
chunk at; it is not, in general, possible for an edge cache to know
this without client coordination. Moreover, an erroneous pre-fetch
decision can waste bandwidth and can pollute the cache.

In this paper, we explore the design of a video caching algorithm
for CDNs that leverages properties of today’s HTTP adaptive video
streaming paradigm to achieve better performance than state-of-the-
art caching techniques.

Contributions. Our first contribution is to understand which prop-
erties of the delivery paradigm can help improve caching. Using
insights from a large video delivery service, we find that chunk
requests are roughly periodic, with average inter-arrival time corre-
sponding to the chunk playback duration. We also find the existence
of a significant number of singletons: chunks cached upon the first
request but never referenced thereafter. Singletons reduce the effi-
cacy of caching by occupying cache space that more popular objects
could use.

Our second contribution is the design of AViC2 which leverages
these two observations and combines an eviction strategy with admis-
sion control. Eviction uses a simple heuristic to estimate a chunk’s
next request time and evicts the chunk with the farthest estimate.
Admission control uses a data driven approach to train a binary
classifier that predicts whether a chunk is a singleton.

2AViC stands for Adaptive bitrate Video Cache

However, naive implementations of eviction and admission con-
trol can significantly increase the computational and memory com-
plexity of the caching algorithm. When a chunk arrives, AViC needs
to update its reference estimates for every other chunk in the video,
which can be computationally expensive. Moreover, for effective ad-
mission control, AViC may need to maintain metadata about videos
and chunks long after their eviction. Our third contribution is a suite
of optimizations that reduce computational complexity to well below
the chunk inter-arrival time, and the memory complexity to that of
competing state-of-the-art algorithms.

Using request traces from a large video delivery service, we show
that AViC outperforms existing caching algorithms. It improves upon
state of the art algorithms such as LHD and AdaptSize by up to 15%
on byte and object hit ratios. These savings allow AViC to reduce
wide-area traffic by more than 39% over competing algorithms, and
to reduce requests to origin servers by more than 18%. Many CDNs
use LRU, and AViC improves upon LRU significantly: an LRU
cache requires up to 3.5× the size of an AViC cache to match its
hit ratio. This finding is important because CDNs have thousands of
front-ends and they partition their caches at each front-end across
video content providers, so requiring a smaller cache for achieving
the same hit ratio enables the CDN to serve more customers with
the same front-end infrastructure.

2 PROPERTIES OF VIDEO DELIVERY
We analyzed a large trace of video requests to understand properties
of video delivery that we could exploit to design a caching algorithm
for video.

Dataset. We used a dataset containing CDN HTTP GET request
logs from a popular video service in the US. This service provides
access to a large library of on-demand videos. Clients access content
from the service either using set-top boxes connected to a residential
broadband network or through mobile applications for Android and
iOS platforms which may connect through a 3G/4G cellular network
or WiFi.

The dataset is from a single CDN over a period of 5 weeks and
has 585 M requests for 620 TB of aggregate video data transferred,
where 120 M requests are from clients in 3G/4G cellular network
and 465 M from residential broadband.

Each entry in the dataset describes a single HTTP GET request
for a video chunk. It records the request arrival time, a unique ID
for the video, the chunk number within the video, the bitrate, a
unique session ID, and the size of the response returned for the
request. It does not contain any form of user-identifiable or personal
information.

In analyzing this dataset, we uncovered three facets of video
delivery pertinent to the design of caching algorithms: (a) Large
variability in object (chunk) sizes; (b) Predictability of chunk inter-
arrivals; and (c) The prevalence of singletons (chunks requested
exactly once). The following paragraphs quantify these observations.

Chunk size variability. Recall from §1 that publishers encode
chunks at multiple bitrates, so clients can adapt download qual-
ity using ABR algorithms [12, 28, 35, 40, 43]. The video service we
study uses 7 encoding bitrates. Figure 2 shows the distribution of
sizes of requested chunks separately for the cellular and residential
clients and combined for the full set of clients. Cellular downloads

306



AViC: A Cache for Adaptive Bitrate Video CoNEXT ’19, December 9–12, 2019, Orlando, FL, USA

Figure 2: Chunk size dis-
tribution for cellular and
residential clients

Figure 3: Intra-session
request interval of client
players

see a range of chunk sizes, from 150 KB to about 800 KB, whereas
residential customers see chunk sizes up to 1800 KB, 12 times the
smallest chunk size.

Size variability is an important factor in cache efficacy. The earli-
est caching algorithms (for page replacement or file buffer manage-
ment in OSs) cached fixed size objects. Optimal caching algorithms
(like Belady’s MIN [16]) exist for this setting. However, when ob-
jects vary in size, especially by an order of magnitude as is the
case in our dataset, caching decisions must take object size into ac-
count when making admission control and eviction decisions. This
is because admitting a large object in the cache sacrifices the oppor-
tunity cost of instead caching smaller objects with potentially higher
aggregate hit ratio.

Finally, an algorithm that caches objects of varying sizes must
perform well both by object hit ratio, the fraction of requested
objects served from the cache, and byte hit ratio, the fraction of
requested bytes served from the cache. This is especially important
for caching video: an algorithm that sacrifices byte hit ratio for high
object hit ratio results in lower bandwidth savings over the wide area
network, while one that sacrifices object hit ratio for higher byte hit
ratio can result in a higher fraction of requests reaching the origin
server.

Request arrival predictability. As discussed in §1, client players
gradually download successive chunks in a video. These players use
playback buffers which limit advanced buffering to a few tens of
seconds of video. Once the playback buffer is full, a player makes
another request only when space becomes available in the buffer.
This suggests that request arrivals should be roughly periodic: if
most clients watch videos at the normal playback rate (instead of,
for example, fast forwarding or rewinding), the average request
inter-arrival time should be roughly the duration of a chunk. More
precisely, it should be slightly smaller than the chunk duration,
because the player anticipates buffer availability and issues the next
request before the playback completes.

Figure 3 shows the CDF of request intervals within a single ses-
sion, separately for cellular and residential clients as well as the
combined dataset (Cell + Res). Almost 89% of cellular requests
and 79% of residential requests arrive within 4 seconds, the chunk
duration used by this video service. Furthermore, the tail of all distri-
butions stretches out beyond 10 seconds. We conjecture (but cannot
conclusively verify, because we lack player-side instrumentation)
that these larger intervals may be due to stalls, paused playbacks
or players releasing more than one chunk from the buffer before
re-filling.

The mean inter-arrival times for the cellular devices is 3.01 s,
while for the full workload is 3.17 s, and the standard deviations are

respectively 1.89 s and 2.85 s. While there is some variability in these
inter-arrival times, the fact that the mean inter-arrival time matches
our intuition about player behavior (see above) is encouraging, and
suggests that future chunk request times might be predictable.

Such predictability is important for caching algorithms: intu-
itively, caching algorithms strive to evict objects likely to be refer-
enced farthest in the future [16]. For most workloads, estimates of
future reference times are difficult to obtain, but that may not be the
case for video, as our data suggests.

The prevalence of singletons. An unusual aspect, at least in our
data set, is the prevalence of singletons: chunks requested exactly
once over a long period of time. Figure 4 shows the CDF of the
number of references to a chunk, within an interval of 12 hours
for different types for clients. For cellular clients over this 12 hour
period, 51% of requests belonged to chunks not referenced again
within that time interval. For residential clients 36% of requests over
a 12 hour period belonged to chunks which were not referenced
again. We also experimented with a longer interval of 24 hours
(graph omitted for brevity). Over a 24 hour interval, 43% of cellular
and 29% of residential requests belonged to chunks which were only
referenced once.

A singleton can pollute a cache, by excluding more popular ob-
jects from the cache, so a well-designed caching algorithm must
strive to exclude singletons. Size variability exacerbates the problem:
large singletons can exclude several smaller objects from the cache,
thereby adversely affecting both object and byte hit ratios.

Singletons can occur because the corresponding chunk belongs
to a highly unpopular video (as with web pages, video popularity
is heavy-tailed [14, 24]). Consider Figure 5, which shows the CDF
of the number of user sessions for videos which contributed sin-
gletons for different types of clients. Among cellular clients 46%
of singletons belong to videos with a single session whereas for
residential clients only 38% of singletons belong to videos with a
single session.

Among residential clients, up to 18% of singletons are from
videos which saw at least 10 sessions over a 12 hr period. To under-
stand how videos with more than one session can result in singletons,
consider the following scenario. Suppose user 𝐴 streams a video
𝑣 and is shortly followed by another user 𝐵 who also streams the
same video. User 𝐴’s network is stable and well provisioned to allow
viewing at a high bitrate whereas user 𝐵’s network is unstable and
can only support a lower bitrate. Due to user 𝐴’s session, the high
quality bitrate gets cached at the server, however, requests from user
𝐵 will result in cache misses because it is requesting a lower bitrate
not used by user 𝐴, so user 𝐴’s chunk is a singleton.

To quantify this intuition, Figure 6 shows the distribution of
requests which used a particular bitrate, for cellular and residential
clients and for the combined dataset. Almost 65% of the cellular
requests accessed bitrate 3, but few requests accessed bitrates 1, 5
and 6, likely resulting in singletons. Across the residential trace,
bitrate 6 is the most preferred bitrate, accounting for 60% of all
requests, but other bitrates account for smaller fractions of requests.
This disparity suggests that caching algorithms must make eviction
and admission control decisions at the granularity of chunk bitrates.

307



CoNEXT ’19, December 9–12, 2019, Orlando, FL, USA Z. Akhtar et al.

Figure 4: Caching potential of requests Figure 5: Popularity of videos which
contributed singletons

Figure 6: Bitrate usage across different
types of clients.

3 AVIC DESIGN
In this section, we describe how we leverage the video delivery
properties discussed in §2 to design an effective caching algorithm,
called AViC, for video caching in CDNs. AViC has two components:
eviction and admission control.

3.1 Overview and Challenges
Eviction. AViC exploits the predictability of request arrivals within
a session to estimate the arrival time of the next request for a given
chunk (its request estimate). This enables us to design an eviction
strategy that evicts the chunk whose request estimate is farthest in the
future. The intuition for why such an algorithm would perform well
comes from the design of MIN [16], a cache replacement algorithm
that replaces objects farthest in the future. MIN is optimal for fixed
size objects; we know of no optimality result for caching algorithms
with variable sized objects (as in our setting) [18].

However, AViC must surmount several challenges in designing
eviction policy: it must estimate request estimates for chunks for
inactive sessions (those for which no chunk exists in the cache), must
determine when to update request estimates and how to keep these
estimates up-to-date, and also obtain request estimates at the granu-
larity of chunk bitrates given chunk size variability. §3.2 describes
how AViC addresses these challenges.

Admission control. Based on the prevalence of singletons, AViC’s
admission control component aims to prevent singletons from pol-
luting the cache. This goal translates into a simple objective: de-
termining whether a chunk is a singleton or not. This is a binary
classification problem, and AViC uses trace data to train a machine
learning classifier. The key challenge in the design of the classifier
is the choice of classification approach, and feature selection. In
particular, feature selection must account for chunk size variability.
§3.3 describes AViC’s admission control component.

Efficiency. AViC must make caching decisions faster than request
inter-arrival times, and its memory footprint must be comparable to
competing caching algorithms. Naive implementations of eviction
can result in high processing times especially for updating request
estimates. Similarly, both eviction and admission control require
maintaining meta-data for videos whose chunks are no longer in the
cache, which, without careful design, can inflate AViC’s memory
footprint. §3.4 describes how AViC achieves its efficiency goals.

3.2 Eviction Policy
AViC evicts the chunk with the farthest next estimated request time.
To achieve this, AViC’s eviction policy consists of three key design
elements. First, it maintains chunk meta-data (e.g., request estimate,
chunk ID) in sorted order by using a max-heap data structure keyed
on the request estimate. It inserts this meta-data into the max-heap
when the chunk is first requested and then maintains it as long as
the chunk exists in the cache. Second, it keeps these estimates fresh
by detecting, and correcting stale estimates. Finally, since multiple
bitrates are available for each chunk, AViC takes this into account
when updating request estimates in the max-heap. We now describe
each of these design elements in detail.

Maintaining sorted next request estimates. To calculate next esti-
mates for chunks, the eviction policy relies on three key operations:
Create, Estimate and Update. AViC invokes Create on each cache
miss, and Estimate and Update on both cache hits and misses.

Create. This operation instantiates meta-data associated with a
video including cached chunks of the video and ongoing sessions.
If the requested chunk belongs to a video 𝑣 that has no other chunk
currently cached, we create a new video record 𝑅𝑣 for 𝑣. 𝑅𝑣 stores
information about ongoing video sessions by maintaining a map of
session records. Each session record contains a sessionID (a 32 byte
string), the last chunk requested by the session and the timestamp at
which the chunk was requested. In addition to session records, 𝑅𝑣

also contains 𝑣’s mean session inter-arrival time.

Estimate. This operation calculates the next request estimate for
a chunk upon receipt of a request for the chunk. Algorithm 1 shows
the pseudocode of Estimate, suppose that a request arrives for the
𝑛-th chunk of video 𝑣 on some session 𝑖. Let 𝑆𝑣 denote the set of all
ongoing sessions for 𝑣. Estimate finds that session from 𝑆𝑣 which
will next request the 𝑛-th chunk. Denote this session by 𝑗 and further
let the last chunk requested by 𝑗 be the 𝑚-th chunk. Then Estimate
calculates the next request estimate 𝑟𝑛 for the 𝑛-th chunk as follows.

Where 𝑚 < 𝑛, 𝑡 is the current time (at which the 𝑛-th chunk
request arrived), and 𝑑 is the chunk duration (§2):

𝑟𝑛 = 𝑡 +
(︀
𝑛−𝑚

)︀
𝑑 (1)

This leverages the predictability of request arrivals, and estimates
the next arrival for 𝑛 to be 𝑛−𝑚 chunk duration in the future.

However, Estimate must also consider the case when the search
through 𝑆𝑣 yields no existing session likely to request chunk 𝑛 in

308



AViC: A Cache for Adaptive Bitrate Video CoNEXT ’19, December 9–12, 2019, Orlando, FL, USA

Algorithm 1: Pseudocode of Estimate operation

1 function Estimate (𝑣, 𝑛, 𝑡)
Input: 𝑣 : the parent video of requested chunk
Input: 𝑛 : the index of requested chunk
Input: 𝑡 : the current unix timestamp
Output: 𝑟𝑛 : the next estimated request for chunk

2 𝑟𝑛 ←∞
3 𝑆𝑣 ← 𝑣.𝑠𝑒𝑠𝑠𝑖𝑜𝑛𝑠

4 for 𝑗 ∈ 𝑆𝑣 do
5 𝑚← 𝑗.𝑙𝑎𝑠𝑡𝐶ℎ𝑢𝑛𝑘

6 if 𝑚 < 𝑛 then
/* let 𝑑 be duration of a chunk */

7 𝑒𝑠𝑡← 𝑡 +
(︀
𝑛−𝑚

)︀
× 𝑑

8 if 𝑒𝑠𝑡 < 𝑟𝑛 then
9 𝑟𝑛 ← 𝑒𝑠𝑡

10 end
11 end
12 end
13 if r𝑛 =∞ then

/* the case when no other session will request n

in future i.e. 𝑚 ≥ 𝑛 for all 𝑗 in 𝑆𝑣 */

14 𝑟𝑛 ← 𝑡 + 𝑣.𝑖𝑛𝑡𝑒𝑟𝐴𝑟𝑟𝑖𝑣𝑎𝑙 + 𝑛× 𝑑

15 end
16 return 𝑟𝑛

the future. This happens when 𝑚 ≥ 𝑛 for all ongoing sessions. In
this case, the request for 𝑛 must come from a new session (in all
our analyses, we assume rewinds and fast-forwards are rare). If the
average session inter-arrival time for 𝑣 is 𝐼 , then:

𝑟𝑛 = 𝑡 + 𝐼 + 𝑛𝑑 (2)

Thus, the estimate 𝑟𝑛 in this case is offset by the time it would take
for a new session for 𝑣 to arrive.

Update. A single chunk request for any chunk in a video can
cause the next estimates of all other chunks in the video to change.
Hence all these chunks need to have their next request estimates
re-computed. The Update operation achieves this. When a request
arrives for a chunk of video 𝑣, and regardless of whether the request
results in a cache hit or miss, Update scans the max-heap and ex-
tracts the metadata of all chunks of video 𝑣, then calls Estimate for
each chunk, obtains the updated request estimate, and updates the
metadata associated with the corresponding chunk.

Keeping request estimates fresh. AViC invokes Estimate for a
cached chunk only when a request arrives for it. Videos whose
sessions were active in the recent past, but have since become idle,
can have stale request estimates for their chunks. Furthermore, these
chunks may be situated deep in the max-heap by virtue of the esti-
mates they had acquired while popular and thus are unlikely to be
evicted. This results in cache poisoning which can adversely impact
cache efficacy.

To address this, AViC maintains video records in an LRU list.
The LRU list allows it to quickly find out which videos have not
had a recent session. On each request of a chunk, AViC picks the
least recently used video and performs Update on its chunks as if
the requested chunk belonged to this video (in addition to updating

chunks belonging to the video of the requested chunk). This ensures
that stale videos will eventually have their estimates recomputed.

Request estimates for different bitrates. So far we have described
the design of AViC implicitly assuming a single bitrate per video.
However, publishers use multiple bitrates for their videos [11]. This
implies that, when a chunk request for the 𝑚-th chunk arrives, AViC
must estimate, for each chunk index 𝑖 in the video, a request esti-
mate for every bitrate 𝑏 corresponding to that estimate. Specifically,
consider a service that uses 3 bitrates, 𝑏1, 𝑏2 and 𝑏3. Let’s say that a
session requests chunk 1, and chunk 3, encoded at 𝑏2 and chunk 5,
encoded at 𝑏3 are in the cache. Should AViC update request arrivals
for both of these using Equation 1?

One possible approach for future request estimation with multiple
bitrates is to preempt the actions of a client player and prioritize the
bitrate it is likely to request [39]. However, this approach requires in-
tricate knowledge of client player’s adaptive bitrate (ABR) algorithm.
Given the range of ABR algorithms [12, 28, 30, 35, 40, 43] and a
large user base comprising of range of heterogeneous devices [11]
this can be challenging.

AViC adopts a data driven approach instead. Figure 6 shows that
some bitrates in our dataset are more popular than others. AViC uses
this relative popularity of the bitrates to weigh the estimates, based
on the idea that less popular bitrates will have a request estimate
farther in the future than more popular ones. It uses a simple heuristic,
inflating the request estimate by the relative popularity. For example,
suppose a video uses just a standard definition (SD) and a high
definition (HD) bitrate. Further, assume that clients are 4 times as
likely to prefer HD bitrates than SD. Then to calculate the request
estimate for an SD chunk, AViC would compute it by inflating the
estimate for the HD bitrate by 4 times.

More precisely, say a video uses 𝑘 bitrates 𝑏1 . . . 𝑏𝑘 . Let 𝑤𝑗 , 𝑗 ∈
1..𝑘 be the ratio of the number of accesses to chunks with bitrate 𝑏𝑗

to chunks with bitrate 𝑏𝑖 where 𝑏𝑖 is the most frequently accessed
bitrate. Then, AViC adapts Equation 1 as follows to compute the
next request time for chunk 𝑛 encoded using bitrate 𝑏𝑗 :

𝑟𝑛𝑏𝑗
= 𝑡 +

(︀
𝑛−𝑚

)︀
𝑑

𝑤𝑗
(3)

It adapts Equation 2 similarly, and we omit this for brevity. To
compute 𝑤𝑗 , AViC maintains a counter of accesses for each bitrate
𝑏𝑗 for each video.

3.3 Admission Control
To address the prevalence of singletons, admission control simply
seeks to detect whether a chunk is likely to be a singleton. If so, it
prevents that chunk from entering the cache. Admitting singletons
not only takes up cache space for more useful chunks but can also
evict chunks that contribute to higher hitrates.

We model singleton detection as a supervised binary classification
problem and train a Gradient Boosted Decision Tree (GBDT) [31]
classifier. This classifier outputs a probability estimate for a future
reference of a chunk; we apply a threshold 𝜏 on this probability [31]
to admit the chunk.

We chose GBDT for several reasons. First, it is fast: training a
single model takes less than 10 minutes on a dataset comprising
of 100 M requests. Second, the size of the resultant model is small,

309



CoNEXT ’19, December 9–12, 2019, Orlando, FL, USA Z. Akhtar et al.

Feature Description
Day The day of the week
Time Time of day in 24 hours format
Chunk size Size of chunk in bytes
Chunk index Index of chunk in video
Chunk bitrate Bitrate of requested chunk
Total video sessions Global No. of video sessions
Video sessions 24 hrs 24hr average no. of video sessions
Video interarrival mean interarrival of video sessions
Video last interval Time since start of last session

Table 1: Features used by admission control classifier.

with an average size of 175.86 KB. Third, GBDTs (and most decision
tree based classifiers) are generally more interpretable than various
deep learning techniques. Finally, they are quick to query and scale
well with requests [17].

A rule-based alternative for admission control would analyze the
video workload and determine admission control rules. For instance,
Figure 6 showed that cellular clients seldom used higher bitrates
for videos. Using this information it may be possible to design an
effective admission control which denies admission to high bitrate
chunks. However, it is not clear whether such a rule based system
can be easily designed manually. More importantly, it would require
laborious manual analysis when the workload changes or when a
publisher changes bitrate choices.

The design of the classifier is non-trivial for two reasons. First,
the definition of a singleton presupposes a time horizon, the time
over which a requested chunk is never requested again. Choosing
the time horizon is our first challenge. The second challenge is the
choice of features.

Choosing the time horizon. In a cache, an object 𝑜 is a singleton
if (a) 𝑜 enters into the cache upon first access, and (b) the caching
algorithm evicts 𝑜 before its next request. The time between first
access and eviction is the time horizon. Time horizons may depend
upon cache size. An object 𝑜 may be a singleton with respect to a
32 GB cache but may not be a singleton with respect to a 64 GB
cache (the latter holds more objects, so the next request for 𝑜 may
arrive before the caching algorithm evicts 𝑜). This observation moti-
vates AViC’s approach of training different classifiers for different
cache sizes. This additional training does not impose a burden on
large CDNs with significant compute resources and GBDTs require
minimal resources to begin with.

But to train the classifier, we need to estimate the time horizon
for a given cache size. We chose a simple estimator: the time to
completely replace the contents of a cache using a FIFO policy.
For each cache size, we can estimate the time horizon cheaply by
simulating a short trace through a FIFO cache of the corresponding
size.

After estimating the time horizon 𝑇 , we generate training samples
from our traces by marking as a singleton any chunk request whose
next request is more than time 𝑇 in the future.

Feature selection. The second challenge in classifier design is fea-
ture selection. Intuitively, several features of a chunk are likely to
predict whether it is a singleton or not. For example, if chunks arrive
infrequently, or video sessions arrive infrequently, then a chunk may
likely be a singleton. If the chunk, or its corresponding video, are

Figure 7: Hierarchical arrangement of max-heaps

less popular, singletons might arise (§2). Finally, the size of a chunk
can potentially be a signal indicating singleton status: as Figure 6
suggests, some bitrates are more likely to be singletons. For this
reason, our GBDT classifier uses these features (Table 1). In §4 we
analyze the importance of each feature for classification.

Other details. In our evaluations, we train a model for each day
(24-hour period) using request logs from the previous 2 weeks (3
week windows only provided marginal benefits). This re-training
accounts for changes in the video workload. We can do this quickly
because GBDT trains fast.

3.4 Performance Optimizations
AViC must make caching decisions faster than requests arrive, and
must have a memory footprint comparable to existing caching algo-
rithms. This section describes optimizations that speed up Estimate
and Update operations, and reduce metadata requirements for ad-
mission control.

Optimizing Estimate. To calculate the request estimate for a chunk,
Estimate must scan all ongoing sessions of a video to find the session
likely to request the chunk earliest. However, searching though all
sessions is unnecessary since some sessions may already have gone
past the particular chunk. For example consider the scenario where
a video 𝑣 contains 30 chunks. The video has three ongoing sessions
𝐴, 𝐵 and 𝐶. Assume that 𝐴 last requested chunk 3, 𝐵 requested 8
and 𝐶 last requested chunk 27. When a request for chunk 9 arrives
from 𝐵 the only session that is likely to request chunk 9 again in the
future is 𝐴 (assuming 𝐴 is unlikely to fast forward, and 𝐶 unlikely
to rewind the video).

To narrow the search space of candidate sessions, AViC uses a
nested hashmap (hashmap of hashmap) data structure to store session
records. The outer hashmap uses a bucket of chunk indices as keys.
Each bucket then maps to another hashmap which maps a chunk
index in the bucket to a list of sessions which last requested the
chunk. If we consider a bucket size of 5 for the outer hashmap, then
in the example above, video 𝑣 has a total of 6 buckets (30 chunks
divided by 5) and each of these buckets maps to another hashmap
with a maximum size of 5 (5 chunks in each bucket). So, 𝐴 gets
hashed to bucket 0 in the outer hashmap and then in the nested
hashmap the chunk last requested by 𝐴 (chunk 3) stores 𝐴’s session
record. Similarly, 𝐵 maps to bucket 1 in the outer hashmap and 𝐶
to bucket 5. When a request for chunk 9 arrives from 𝐵, AViC starts
searching from bucket 1 and moves backwards, searching till any
other session that is going to request chunk 9 in the future is found.
This results in a constant (𝑂

(︀
1
)︀

) time search complexity, because

310



AViC: A Cache for Adaptive Bitrate Video CoNEXT ’19, December 9–12, 2019, Orlando, FL, USA

after indexing in to the outer hashmap, the search space is restricted
to the size of bucket. AViC uses a bucket size of 25 chunks, which
requires a total of 432 buckets for a 3-hour video with 4-second
chunks.

Optimizing Update. This operation recalculates the request esti-
mates for all chunks of a given video. This can be expensive since a
video can have thousands of chunks.

Observe that Update does not need to update every chunk. Instead,
for a given video, it only needs to update that chunk with the farthest
next estimated request. As long as this chunk’s request estimate is
accurate, AViC can make eviction decisions. However, searching
this local farthest chunk is expensive using a single max-heap.

To optimize this lookup, AViC organizes the cache as a hierarchy
of local max-heaps and a global heap (Figure 7). There is one local
heap for each video, which contains its chunks sorted according to
the request estimates. The global max-heap has pointers to the root
nodes of all the local video specific heaps. Then, finding the farthest
chunk in a video is a single heap lookup.

With this design, to evict a chunk AViC first consults the global
heap to find the video which holds the chunk with the farthest next
reference. Let 𝑐𝑓 denote this chunk and assume that video 𝑣 holds
𝑐𝑓 . AViC then removes the meta data associated with 𝑐𝑓 from 𝑣’s
local heap. After removing the chunk, if 𝑣’s local heap is non-empty,
AViC updates 𝑣’s node in the global heap with the new root of
the local heap. It can then evict 𝑐𝑓 . These steps require three heap
operations.

Optimizing Update also reduces the amount of work AViC needs
to do to avoid stale estimates (§3.2). On each chunk request, AViC
only updates the request estimate for the farthest chunk of the least
recently used video.

Reducing metadata storage. AViC’s eviction and admission con-
trol policies use historical information associated with videos. AViC’s
eviction algorithm orders chunks by their next request estimates
(§3.2). To compute these estimates, Equation 2 needs the inter-arrival
time of sessions for a video. Likewise, for admission control (§3.3),
AViC assembles a set of features on each chunk request, then uses
these to query the GBDT model. These features are video-specific
(Table 1). As such, AViC might need to maintain state for every
video, which can result in a high memory footprint.

To reduce memory footprint, observe that AViC may not need
to maintain accurate state for every video. For instance, consider
a video 𝑣 which has inter-arrival of 𝐼 between successive sessions
and further suppose that 𝐼 is significantly large, e.g., > 24 hours.
In this case, if AViC caches chunks of 𝑣, it would likely evict them
much earlier than 𝐼 — the interval after which another session for
𝑣 arrives. In other words, chunks of 𝑣 will be singletons. For such
unpopular videos, maintaining accurate estimates of inter-arrivals
does not contribute towards improving the performance of AViC.

Based on this insight, instead of maintaining state for all videos,
AViC maintains historical state for the 𝑁 most recently requested
videos. It does this by maintaining video records in two separate LRU
lists. An Active LRU list which keeps track of the videos currently in
cache and an Inactive LRU list which keeps track of videos requested
recently but are no longer active. When AViC evicts a video 𝑣 from
the Active list it moves it to the Inactive list but preserves its state. If
a session for 𝑣 arrives while it is in the Inactive list, AViC moves 𝑣

back to the Active list. If no further sessions arrive while a video is
in the Inactive list, AViC eventually evicts the video and removes its
state. AViC uses a value of 𝑁 = 5000 which allows it to achieve high
performance while keeping AViC’s memory footprint comparable
to or within the memory footprint of other algorithms. We evaluate
AViC’s sensitivity to 𝑁 in §4.

4 EVALUATION
This section compares AViC to several other caching algorithms and
quantifies the benefits of our design choices.

4.1 Methodology
Implementation. We have implemented AViC in Go [3]. This imple-
mentation takes as input a request trace and a cache size, processes
the requests in the trace, and outputs the byte and object hit ratios.

Dataset. We have a dataset containing 5 weeks worth of a subset of
requests to a large video provider (§2). We use weeks 4 and 5 from
our dataset to compare AViC with other alternatives, and the weeks 2,
3 to train the admission control classifier3. In weeks 4 and 5, the data
contains 117 M requests with a total of 124 TB of aggregate requests.
Of the 117 M requests, 24 M correspond to cellular clients and the
remaining 93 M correspond to residential clients. We evaluate AViC
and other alternatives separately for cellular and residential client
requests, and also collectively over the 117 M requests.

Metrics. We compare performance using both byte hit ratio and
object hit ratio (§2). Both metrics are important for video: a high
byte hit ratio reduces backbone traffic from CDN front ends to
origin servers and a high object hit ratio reduces the number of
requests to CDN origin. Further, by showing both metrics together,
our goal is also to show that AViC doesn’t compromise one metric
while achieving high performance on the other (as some competing
algorithms do).

Baseline algorithms. We compare AViC against four algorithms:
LRU, GDSF [22], AdaptSize [19] and LHD [15]. We pick LRU
since it is one of the most widely deployed cache algorithms. GDSF
combines frequency and size with recency to improve over LRU.
AdaptSize combines admission control with LRU. Its admission
control uses an adaptive size threshold to prevent admission of large
objects into the cache. LHD uses hit density to maximize those
objects in the cache which contribute most to the hitrate given their
size. Together, these four algorithms cover a range of designs. Finally,
to present results with reference to an approximate upper bound for
the achievable hit ratios, we also show hit ratios of an Oracle which
applies MIN [16] to our variable-sized workload. As discussed in
§2, MIN is not optimal for variable-sized objects and we have not
changed MIN’s eviction strategy to take size in to account. To the
best of our knowledge, no provable offline optimal algorithm is yet
known for variable sized objects [18]. For our workload, therefore,
MIN only provides a loose upper bound.

To evaluate these algorithms, we have used author-provided im-
plementations for AdaptSize and LHD [1, 7], and have implemented
LRU and GDSF.

3As discussed in §3 we also experimented with using the first three weeks to train
the classifier, but it yielded marginal benefits.

311



CoNEXT ’19, December 9–12, 2019, Orlando, FL, USA Z. Akhtar et al.

Cache
Size (GB) LRU GDSF AdaptSize LHD AViC Oracle

32 10.56 13.11 9.88 12.46 18.05 28.58
64 14.32 16.52 13.23 17.51 23.14 35.35
128 19.55 22.33 18.46 25.41 29.98 43.39
256 27.28 32.51 27.51 34.98 38.75 52.30
512 38.00 44.41 36.60 44.47 48.17 61.31

1024 50.22 54.58 41.28 52.23 57.71 69.58

Table 2: Byte hit ratio comparison for residential clients

Cache
Size (GB) LRU GDSF AdaptSize LHD AViC Oracle

32 9.60 12.77 9.64 11.74 15.75 25.01
64 12.93 15.93 12.64 16.12 20.01 30.73
128 17.41 20.87 17.27 22.70 25.75 37.63
256 23.93 29.35 24.97 30.97 33.41 45.55
512 33.02 39.73 32.88 39.92 42.38 54.04

1024 43.71 49.64 37.82 48.41 52.07 62.48

Table 3: Object hit ratio comparison for residential clients

Cache
Size (GB) LRU GDSF AdaptSize LHD AViC Oracle

32 16.27 18.87 14.44 18.46 23.76 38.08
64 22.30 26.93 21.32 27.39 32.60 46.18
128 31.02 37.60 29.75 37.40 41.30 54.50
256 42.03 46.53 39.85 45.64 50.54 62.02
512 53.34 55.62 46.34 55.26 58.19 67.28

1024 62.24 63.20 40.98 63.15 64.24 68.65

Table 4: Byte hit ratio comparison for cellular clients
4.2 Performance Comparison
Residential clients. Table 2 and Table 3 show the byte and object
hit ratios over a range of caches sizes for residential clients. AViC
consistently outperforms other algorithms both in byte and object
hit ratios at different cache sizes. For instance, for a 128 GB cache,
AViC improves over LRU by 24.0% and over GDSF by 17.6% in
byte hit ratios. To put it another way, LRU needs 3.5× the cache
size to match the byte hit ratio performance of AViC. Finally, AViC
is about 26.5% better than AdaptSize and about 10.5% better than
LHD in byte hit ratio (with slightly lower gains on object hit ratio),
both recently proposed algorithms, across the range of cache sizes
we evaluate.

Cellular clients. Table 4 and Table 5 show the byte and object hit
ratios for the cellular clients. Cellular clients tend to prefer slightly
lower bitrates than residential clients and therefore exercise the
cache differently. As with the previous results, AViC outperforms
the competing algorithms, but by smaller margins. For a 128 GB
cache AViC outperforms LRU by 18.9%, GDSF by 6.8%, AdaptSize
and LHD by 21.2% and 7.2% for byte hit ratios. For cellular clients,
an LRU cache requires approximately 2× the cache size used by
AViC to match its performance.

All clients combined. Table 6 and Table 7 show the byte and object
hit ratios over a range of different cache sizes for our full trace
dataset (cellular and residential client combined). AViC is able to
consistently outperform all competing algorithms over the entire
trace as well: up to 28.1% better than LRU and AdaptSize, and up

Cache
Size (GB) LRU GDSF AdaptSize LHD AViC Oracle

32 15.85 18.45 14.33 18.21 23.01 36.96
64 21.68 26.47 21.01 27.03 31.61 44.74

128 30.14 36.99 29.41 36.85 39.47 52.67
256 40.78 45.71 39.25 44.85 47.81 59.88
512 51.58 54.30 45.41 53.95 55.58 65.15
1024 60.09 61.47 40.77 61.47 61.93 66.53

Table 5: Object hit ratio comparison for cellular clients

Cache
Size (GB) LRU GDSF AdaptSize LHD AViC Oracle

32 9.97 12.37 8.92 10.86 16.94 27.73
64 13.53 15.60 11.60 14.70 21.72 34.27

128 18.35 20.35 16.34 20.39 28.16 42.05
256 25.58 29.10 24.64 29.43 36.78 50.85
512 35.64 41.45 35.47 39.40 46.47 59.97
1024 47.77 52.23 44.84 48.44 56.26 68.50

Table 6: Byte hit ratio comparison for all clients.

Cache
Size (GB) LRU GDSF AdaptSize LHD AViC Oracle

32 8.82 12.28 9.32 11.01 14.37 24.12
64 12.01 15.38 12.21 14.79 18.27 29.74

128 16.09 19.84 16.80 20.41 23.68 36.62
256 22.03 27.54 23.71 29.04 31.33 44.75
512 30.46 38.52 33.19 39.07 40.90 53.89
1024 41.13 48.99 42.63 48.51 51.06 62.89

Table 7: Object hit ratio comparison for all clients.
to 18.6% better than LHD and GDSF. At larger cache sizes, the
performance difference narrows: with a 1 TB cache, all algorithms
perform comparably, and approach the Oracle.

Explaining performance differences. We now try to understand
what causes AViC to perform better than some of the competing
algorithms.

GDSF and LHD. Unlike AViC, GDSF and LHD prefer to evict
larger chunks over smaller chunks. This strategy can help achieve
higher object hit ratios at the expense of lower byte hit ratios. When
object sizes follow a normal distribution, this strategy may work
well. However, the size distributions for video delivery may be
significantly skewed, because video chunk sizes depend on factors
such as the type of bitrates provided by the content provider, the
network the clients are on, and the ABR algorithms used by client
player. As Figure 6 shows, 60% of residential client requests were
for the highest bitrate chunks. As such, penalizing the size of the
chunks can put GDSF and LHD at a disadvantage because they are
likely to prefer higher bitrate chunks for eviction — the same chunks
which can potentially deliver higher byte and object hit ratios if
cached.

To demonstrate this more concretely, we consider a variant of
GDSF algorithm. This variant modifies the cost function used by
GDSF by halving the size penalty to highest bitrate chunks. Figure 8
shows the byte and object hit ratios comparison between the original
GDSF algorithms and this modified version (GDSF-MOD). Notice
that GDSF-MOD achieves higher byte hit ratios while achieving

312



AViC: A Cache for Adaptive Bitrate Video CoNEXT ’19, December 9–12, 2019, Orlando, FL, USA

Figure 8: Performance comparison of a modified GDSF al-
gorithm

higher or comparable object hit ratios. Even with this improvement,
however, GDSF-MOD does not outperform AViC.

The penalty imposed on size also explains why the performance
gap between AViC and baselines is smaller for cellular clients com-
pared to residential clients. As Figure 6 shows, cellular clients tend
to prefer bitrate 3 whose chunk size is 4.1× smaller than bitrate 6.
The adverse impact of chunk sizes impacts the cellular workload
less, so competing algorithms fare slightly better for these clients.

AdaptSize. Admission control in AdaptSize uses a dynamic size
threshold to decide whether to admit an object to the cache or not.
It assigns a low probability of admission to objects which are large.
This results in high object hit ratios for a Web workload whose size
varies over a large range (1 B to 1 GB [19]).

However, our results for both residential and cellular clients show
that AdaptSize is unable to outperform LRU, for two reasons. First,
the size distribution of video chunks is in smaller range (150 KB to
1800 KB) than that of Web workloads. Second, unlike Web work-
loads which may have few large objects, in both the residential and
the cellular traces, higher bitrates are more popular (Figure 6). 60%
of residential clients prefer the highest bitrate whereas 78% of cel-
lular clients prefer the 3rd and 4th bitrate. Because of these two
factors, AdaptSize’s admission control often prevents higher bitrate
chunks from entering the cache, resulting in poor performance. Over
the combined trace, AdaptSize narrowly outperforms LRU in object
hit ratios (Table 7). A less skewed aggregate size distribution in the
combined trace allows AdaptSize to find reasonable size thresholds
to filter large chunks while still delivering high object hit ratios.

Unlike AdaptSize, AViC does not solely rely on the size of the
chunk to decide admission. Instead it uses other factors such as the
bitrate of the chunk, its position in the video (chunk index), and its
popularity, which allows it to make better admission decisions.

Implications of results. While AViC’s absolute gains over compet-
ing algorithms seem small, they are still significant. Many CDNs use
LRU, and AViC’s performance gains over LRU are significant. In
particular, the fact that LRU requires 2-3.5× bigger cache, especially
at small cache sizes, to achieve the same hit ratios as AViC is impor-
tant. CDNs can have thousands of front end servers [20], and may
serve hundreds of video publishers [11]. For each publisher, at each
front end, a CDN might wish to virtualize the cache — partition
a large cache into smaller caches dedicated to each publisher, to
avoid cache interference between clients of different publishers. Our
results show that AViC offers significant cache consolidation oppor-
tunities: to achieve today’s hit ratios, a CDN need only provision
half to a third size of caches in its front ends.

Figure 9(a) shows the hourly average CDN bandwidth savings
and Figure 9(b) shows the average hourly requests prevented from
reaching the origin. At smaller cache sizes (32 GB, 64 GB, 128 GB),

Cache
Size (GB) AViC w/o adm

ctrl
w/o BR
weights

w/o stale
avoidance Oracle

32 23.76 22.66 20.19 13.52 38.08
64 32.60 30.48 27.37 19.00 46.18

128 41.30 39.40 36.49 26.55 54.50
256 50.54 48.93 46.20 36.83 62.02
512 58.19 57.74 56.19 48.96 67.28

1024 64.24 64.05 63.29 60.73 68.65

Table 8: Impact of AViC’s components on performance

AViC on average saves up to 39.2% more bytes per hour than the
closest competitor. Further, it saves up to 18.8% of requests per
hour served by the CDN’s origin servers. These savings in bytes and
number of requests are significant. Video is the dominant component
of Internet traffic, and wide-area bandwidth costs are significant [29],
so even small reductions in wide-area traffic can be important. These
savings can also benefit origin server provisioning.

Finally, recent trends suggest a move towards higher-quality video
streaming formats, such as 4K and Ultra-HD [9, 11]. This means
that in the future content providers are likely to offer even higher
bitrates. As such, the gap between AViC and algorithms which
simply penalize object size, such as GDSF and AdaptSize is likely
to be higher in the future.

Performance compared to Oracle. While AViC outperforms the
competing algorithms, it exhibits a noticeable performance gap rela-
tive to Oracle. For example, at smaller cache sizes, AViC’s hit ratios
are between 60− 65% of Oracle’s hit ratios. Three factors explain
these performance differences.

AViC uses the mean inter-arrival time of sessions for videos
for request estimates. However, inter-arrival times can take a few
sessions to converge to a stable value, until which time estimates can
be inaccurate. We found, using a 128 GB cache on the residential
trace, that a significant fraction (3.42%) of non-singleton chunks,
when they were evicted, had inaccurate estimates because not enough
sessions had arrived to obtain a reliable mean inter-arrival time
estimate. Even with good estimates for the mean inter-arrival time,
AViC can have erroneous request time estimates for two reasons.

AViC assumes that seeks or pauses in video, or users reneging,
are relatively infrequent. However, this assumption can be easily vi-
olated in the real world, invalidating future request estimates. AViC
also does not account for client activity resulting from network
throughput conditions. For instance, it does not know when a client
is about to experience re-buffering, which can also induce error in
request estimates. Finally, in the initial period of a session, client
players tend to request chunks at smaller time intervals to quickly
fill up the playback buffer. During this period, AViC can incorrectly
estimate timestamps for future requests of a chunk, but this estima-
tion error is upper bounded by the size of the playback buffer. Thus,
if a client uses a 2 minute buffer, and (hypothetically) fills it up
instantaneously at the beginning of the session, the error in a request
estimate can be at most 2 minutes.

We computed the distribution of the estimation error for those
chunks which had good estimates for the mean inter-arrival times.
For a 128 GB cache on the residential trace, while the median error
was only 4 s (about one chunk duration), the 99-th percentile error
was 52.3 s. This long tail of the error distribution likely explains the
difference between AViC and the Oracle.

313



CoNEXT ’19, December 9–12, 2019, Orlando, FL, USA Z. Akhtar et al.

(a) Per hour bandwidth savings comparison (b) Per hour request savings comparison

Figure 9: Savings in bandwidth and requests to the CDN Origin.

Figure 10: Singletons with a toy cache of size 2 and 1 object

4.3 Ablation Study
Each component of AViC contributes significantly to performance.
Table 8 shows byte hit ratios when we remove one of the three main
components of AViC: admission control, correct request estimation
for bitrates, and stale estimate avoidance. These results are for cellu-
lar clients; the object hit ratio and results for residential and the full
set of clients are qualitatively similar, and we omit these for space.

Especially at lower cache sizes, the mechanism to prevent stale
estimates by updating the least recently used video contributes the
most (over 10% gains at cache sizes up to 512 GB), since stale
videos can potentially cause poisoning of the cache limiting its
performance over the long run. Weighting requests estimates by
bitrate popularity, and admission control, each improve performance
by a few percentage points.

Table 8 also allows us to examine the merits of admission control
in greater detail. The hitrate improvement due to admission control
is relatively higher for smaller sized caches because the effectiveness
of admission control is proportional to the percentage of requests
which act as singletons in a given request workload. Smaller caches
have a smaller time horizon (§3.3) causing a larger percentage of
requests to act as singletons in a given workload. For larger cache
sizes, a smaller fraction of requests act as singletons, so admission
control shows lower gains.

To understand this better, consider Figure 10 which shows a
simple request trace of three different objects A, B and C. Requests
for object C arrive after 25 sec on average, whereas requests for
objects B and A arrive every 15 sec and 8.75 sec (on average)
respectively. The corresponding behaviours of AViC caches of size
2 and size 1 are also shown with check marks representing hits and
cross marks representing cache misses. Notice that for the size 2

cache, requests for C act as singletons because it is evicted before a
second request arrives for it, whereas for size 1 cache, requests for
both objects B and C are singletons as admitting neither to the cache
would result in any hits.

4.4 Time and Memory Complexity
Time complexity. To be practical, AViC must service requests faster
than the rate at which they arrive (§3.4). Figure 11(a) plots two
curves: the distribution of request inter arrival times and the distri-
bution of AViC’s request processing latency. To compute the latter,
we use a single 2.4 Ghz core of an Intel Xeon server. Because of its
careful data structure and request estimate design, AViC is able to
process requests 1-2 orders of magnitude faster than request arrivals.

Memory complexity. To analyze the memory usage, we profile
the amount of memory allocated to AViC by using Go’s run-time
profiler [5]. This is the preferred approach for profiling Go programs
and provides accurate statistics on how much memory Go’s run-
time allocates to a process [4]. We periodically place calls using the
run-time profiler to sample the memory size during a run of AViC
Go.

Figure 11(b) shows the average size of the allocated memory for
AViC in comparison to LRU and GDSF. The error bars show the
standard deviation. As expected, LRU is the most efficient in terms
of memory usage, whereas AViC uses less than 2× the memory used
by LRU. Notice that among the three algorithms, GDSF uses the
most memory. This difference arises from the way Go’s runtime
allocates memory to dynamically sized data structures.

Both AViC and GDSF use heaps to maintain the metadata associ-
ated with cached objects. Heaps in Go use dynamic arrays. The size
of these dynamic arrays are not fixed at compile time, instead the
Go runtime initializes them to a default size. To grow the heap, the
runtime resizes the array typically by a factor of 1.25− 2×.

The difference in memory usage arises in the way GDSF uses
heaps. By design, GDSF uses a single heap to track all chunks in the
cache. The size of this single heap is much larger than the smaller
heaps which result due to the hierarchical heap design used by AViC
(§3). As a result, GDSF’s single heap grows by larger amounts (in
absolute terms) than AViC’s heaps: the runtime individually resizes
the latter’s heaps.

Cost of Maintaining Session State. Recall from §3 that for each
active video AViC maintains the set of ongoing session records. A

314



AViC: A Cache for Adaptive Bitrate Video CoNEXT ’19, December 9–12, 2019, Orlando, FL, USA

(a) Request inter arrivals and service la-
tency

(b) Memory complexity compared to LRU
and GDSF.

Figure 11: Savings in bandwidth and requests to the CDN Origin. Figure 12: Byte hit ratio sensitivity to 𝑁

single session record uses 40 bytes: a 32 byte sessionID, a 4 byte
integer to record the last chunk requested by the session, and a 4
byte integer to record the timestamp at which the last chunk was
requested. As an upper bound, consider a server that is concurrently
serving 10 M sessions. For this server, the cost of maintaining the
session pool is 400 MB. However, we note that in practice the
number of concurrent sessions video servers can handle, may be
orders of magnitude lower. This is because video chunks can be large
(typically between few hundreds of Kilobits to tens of Megabits) and
a much smaller number of concurrent sessions can end up saturating
the available bandwidth of a server.

Summary. Together, these results demonstrate that AViC (i) can
handle a high load of requests without compromising performance
and (ii) keeps memory overhead low compared to other algorithms.
Since we use standalone implementations of LHD and AdaptSize, we
could not use the same profiling approach to estimate their memory
usage. We have left it to future work to instrument their implemen-
tations to obtain accurate memory usage for these algorithms, but
expect that their memory footprint will be no lower than LRU.

4.5 Sensitivity Analysis
Global history. AViC uses an Inactive video list to maintain meta-
data associated with videos which do not have any chunks cached
(§3). This metadata allows it to compute features needed for admis-
sion control as well as the inter-arrival times for videos needed for
request estimates.

We now analyze how sensitive are AViC’s results to 𝑁 , the num-
ber of video records maintained in the Inactive video list. Figure 12
show the byte hit ratios (object hit ratio omitted for brevity) for
different cache sizes as a function of 𝑁 . Large cache sizes (512 GB,
1024 GB) are not sensitive to 𝑁 . This is because large caches are big
enough to already hold unpopular videos in the Active list of videos
and hence do not benefit from the Inactive list. Smaller caches are
sensitive up to around 𝑁 = 50. AViC chooses to be conservative
and uses a value of 𝑁 = 5000 since the memory cost of maintaining
5000 video records is small; at this value, AViC is not affected by
discarding history.

Admission control. Figure 13 shows the relative importance of
different features to the performance of GBDT’s classifier. The
two most important features are the average number of sessions
for a video over a 24 hour period and the inter arrival time of new
sessions for a video. The bitrate of the requested chunk also plays an

Figure 13: Importance of features to GBDT classification.

Figure 14: Correlation of video popularity over time.

important role followed by other chunk level attributes such as the
size of the chunk and the index of the chunk in the video. Notice that
chunk index is a weaker predictor of singletons than the bitrate of
the requested chunk. This is likely due to unpopular bitrates which
can cause singletons to occur at any chunk index of a video. These
relative importance results conform to intuition and suggest that the
GBDT classifier learns request patterns well.

To understand why the workload is amenable to learning, we
analyze the correlation of popularity of videos over adjacent periods
of 24 hours. Figure 14 shows this correlation over two sets of adja-
cent days. It shows that the videos which are popular tend to remain
popular the next day and unpopular videos remain unpopular. We
have also analyzed this correlation over 48 hour intervals and found
similar results; we omit these for brevity.

315



CoNEXT ’19, December 9–12, 2019, Orlando, FL, USA Z. Akhtar et al.

5 DISCUSSION
Buffering strategy and user behavior. AViC’s design assumes that
client players limit advanced buffering to at most a few minutes. To-
day, most players use a 30 sec-240 sec playback buffer [2, 6]. We
believe that this is unlikely to change due to: (i) bandwidth limita-
tions and (ii) the risk of user session abandonment which can result
in wasted bandwidth. We also argue that this assumption applies
generally to a large range of client players because in designing
AViC we have neither filtered out requests nor optimized for any
particular type of player.

AViC’s design also does not account for user behavior. As dis-
cussed in §4, user activity such as seeks and pauses can cause in-
accurate estimates for future request timestamps. While we do not
characterize how frequently user paused or navigated a video in
our traces, our results use real traces which capture realistic user
behavior. On these traces, AViC obtains high hit-ratios even though
it doesn’t model seeks and pauses. Future work can explore whether,
and to what extent, estimating seeks and pauses can improve hit-
ratios.

Importance of smaller cache sizes. Our evaluations use small
cache sizes as well as large ones. We believe it is important to
evaluate video caching for smaller cache sizes because CDNs stati-
cally partition a cache across multiple video content providers (to
avoid one provider’s video chunks from polluting another’s cache).
In this setting, an algorithm that has high cache hit rates for smaller
sizes helps CDNs provision edge caches better.

AViC’s generalizability. AViC’s design is particularly optimized
for adaptive bitrate video and it is unlikely to perform well for other
types of workloads. However, any workload where future request
timestamps can be estimated can potentially benefit from AViC’s
approach.

6 RELATED WORK
Caching can improve the performance of databases, key-value stores,
operating systems and web proxies, to name a few. So, caching
algorithms have been extensively studied in the literature [15, 19,
22, 25–27, 33, 36, 38, 44]. Many of these designs combine recency
and frequency using different techniques. For example, Facebook’s
photo caching algorithm [27] uses four LRU lists and moves objects
from lower LRU lists to higher lists on hits and evicts objects from
the lowest of the 4 lists. Similarly, LRFU [33] augments a single
LRU list with a LFU (least frequently used) list hence allowing the
eviction policy to leverage recent history as well as older history
from the LFU list. These general purpose algorithms assume the
Independent Reference Model (IRM). As we have discussed in this
paper, the IRM model does not necessarily hold for video delivery.

Algorithms can also use the size of an object when making evic-
tion decisions. For example, the Greedy Dual Size family of algo-
rithms [22, 44] penalize objects based on their sizes. This design
evicts large sized objects first. AdaptSize [19] uses admission control
to prevent large sized objects from getting into the cache, which is
useful when object sizes vary such that the admission of a single ob-
ject can evict a large number of smaller objects. LHD [15] computes
a hit density which is a function of the objects size. The algorithm
maximizes the hitrate density of the cache. AViC does not use the

size alone but combines it with other attributes of the chunk for its
admission control decisions.

Other prior work has observed that caching efficacy can be im-
proved by leveraging properties of the application. PacMan [13]
coordinates caching and eviction decisions across caches in a cluster
running parallel applications, to ensure memory locality for all par-
allel instances of a task. This ensures lower task completion times.
AViC focuses on caching video chunks at a single CDN edge cache,
and leverages predictability of video access to improve performance.

Prior work has exploited the dependency between successive
video chunks requests to design pre-fetching strategies [34, 39, 42].
Pre-fetching allows the cache to maximize hit ratios, but, for video,
suffers from two limitations. First, it relies on accurately predicting
client bitrate adaptation behavior. This is difficult to do in practice
because of heterogeneity in client devices [11] and variety in ABR
algorithms [12, 28, 30, 40, 43]. Second, these schemes can pre-fetch
video chunks that a client may never request (e.g., if the session
terminates or user seeks or pauses playback) wasting wide-area net-
work bandwidth. AViC does not assume knowledge of the bitrate
adaptation algorithm, and never pre-fetches chunks. Instead, it fo-
cuses on estimating when a cached chunk will be requested again
and evicts the chunk with the farthest estimate.

Recent work has explored machine learning techniques to design
caching algorithms. LFO [17] pre-processes request traces to gen-
erate the caching behavior of an offline Oracle and uses decision
trees to learn the behavior. AViC also uses decision trees but to solve
a simpler problem of classifying singletons. More broadly, recent
work has explored training deep neural nets to make eviction [37, 41]
and admission control (RL-Cache [32]) decisions. While these deep
learning techniques can offer higher accuracy, decision trees are
light weight and more interpretable which makes them better suited
to AViC. Future work can explore whether deep-learning based ad-
mission control is significantly more effective than AViC’s approach.

7 CONCLUSION
In this paper, we describe AViC, a CDN front-end caching algorithm
specifically designed for adaptive bitrate video. AViC leverages three
properties of video delivery: chunk size variability, predictability of
request arrivals, and the prevalence of singletons. Its eviction policy
uses predictability of request arrivals to estimate future chunk request
times, and its admission control predicts singleton chunks. AViC
incorporates performance optimizations to reduce time and memory
complexity. Using request traces from a real-world video service,
we show that AViC outperforms a range of algorithms including
LRU, GDSF, AdaptSize and LHD by up to 50% in byte and object
hit ratios. Future work can attempt to close the gap between AViC
and Oracle, by improving request estimates during pauses, stalls, or
early in the session when players may request chunks back-to-back.

Acknowledgements. We express gratitude to our shepherd, Ganesh
Ananthanarayanan and the anonymous reviewers for their construc-
tive feedback which greatly helped improve the paper. We also thank
Greg Smith and Gwo-Ming Jan for their help. This material is based
upon work supported by the National Science Foundation under
Grant No. CNS-1413978.

316



AViC: A Cache for Adaptive Bitrate Video CoNEXT ’19, December 9–12, 2019, Orlando, FL, USA

REFERENCES
[1] AdaptSize. https://github.com/dasebe/webcachesim.
[2] Dash Industry Forum: Dash.js. https://github.com/Dash-Industry-Forum/dash.js.
[3] Golang. https://golang.org/.
[4] Golang: Debugging performance issues in Go programs. https://github.com/

golang/go/wiki/Performance.
[5] Golang: runtime package. https://golang.org/pkg/runtime/.
[6] JW Player. https://www.jwplayer.com/.
[7] LHD. https://github.com/CMU-CORGI/LHD.
[8] Sandvine: Global Internet phenomena report . https://www.sandvine.com/

downloads/general/global-internet-phenomena/2014/2h-2014-global-internet-
phenomena-report.pdf.

[9] Cisco: It Came to Me in a Stream... . https://www.cisco.com/web/about/ac79/
docs/sp/Online-Video-Consumption_Consumers.pdf, 2012.

[10] Cisco: Visual Networking Index: Global Mobile Data Traffic Forecast Update
2016-2021 . http://www.cisco.com/c/en/us/solutions/collateral/service-provider/
visual-networking-index-vni/mobile-white-paper-c11-520862.html, 2017.

[11] Z. Akhtar, Y. S. Nam, J. Chen, R. Govindan, E. Katz-Bassett, S. Rao, J. Zhan,
and H. Zhang. Understanding video management planes. In Proceedings of the
Internet Measurement Conference 2018, IMC ’18, 2018.

[12] Z. Akhtar, Y. S. Nam, R. Govindan, S. Rao, J. Chen, E. Katz-Bassett, B. M.
Ribeiro, J. Zhan, and H. Zhang. Oboe:Auto-tuning video ABR algorithms to
network conditions. In Proceedings of the Conference of the ACM Special Interest
Group on Data Communication, SIGCOMM ’18, 2018.

[13] G. Ananthanarayanan, A. Ghodsi, A. Wang, D. Borthakur, S. Kandula, S. Shenker,
and I. Stoica. Pacman: Coordinated memory caching for parallel jobs. In Proceed-
ings of the 9th USENIX Conference on Networked Systems Design and Implemen-
tation, NSDI’12, 2012.

[14] M. F. Arlitt and C. L. Williamson. Internet web servers: workload characterization
and performance implications. 1997.

[15] N. Beckmann, H. Chen, and A. Cidon. LHD: Improving Cache Hit Rate by
Maximizing Hit Density. In 15th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 18), 2018.

[16] L. A. Belady. A study of replacement algorithms for a virtual-storage computer.
IBM Syst. J., 1966.

[17] D. S. Berger. Towards lightweight and robust machine learning for cdn caching.
In Proceedings of the 17th ACM Workshop on Hot Topics in Networks, HotNets
’18, 2018.

[18] D. S. Berger, N. Beckmann, and M. Harchol-Balter. Practical bounds on optimal
caching with variable object sizes. Proc. ACM Meas. Anal. Comput. Syst., 2018.

[19] D. S. Berger, R. K. Sitaraman, and M. Harchol-Balter. Adaptsize: Orchestrating
the Hot Object Memory Cache in a Content Delivery Network. In Proceedings of
the 14th USENIX Conference on Networked Systems Design and Implementation,
NSDI’17, 2017.

[20] M. Calder, X. Fan, Z. Hu, E. Katz-Bassett, J. Heidemann, and R. Govindan.
Mapping the Expansion of Google’s Serving Infrastructure. In Proceedings of the
2013 Conference on Internet Measurement Conference, IMC ’13, 2013.

[21] P. Cao and S. Irani. Cost-aware WWW Proxy Caching Algorithms. In Proceedings
of the USENIX Symposium on Internet Technologies and Systems on USENIX
Symposium on Internet Technologies and Systems, USITS’97, 1997.

[22] L. Cherkasova. Improving WWW Proxies Performance with Greedy-Dual-Size-
Frequency Caching Policy. 1998.

[23] E. G. Coffman and P. J. Denning. Operating Systems Theory (Prentice-Hall series
in automatic computation). Prentice Hall, 1973.

[24] C. R. Cunha, A. Bestavros, and M. E. Crovella. Characteristics of www client-
based traces. 1995.

[25] G. Einziger, R. Friedman, and B. Manes. TinyLFU: A Highly Efficient Cache
Admission Policy. volume 13, Nov. 2017.

[26] N. Gast and B. Van Houdt. Transient and steady-state regime of a family of
list-based cache replacement algorithms. In Proceedings of the 2015 ACM SIG-
METRICS International Conference on Measurement and Modeling of Computer
Systems, SIGMETRICS ’15, 2015.

[27] Q. Huang, K. Birman, R. van Renesse, W. Lloyd, S. Kumar, and H. C. Li. An
analysis of facebook photo caching. In Proceedings of the Twenty-Fourth ACM
Symposium on Operating Systems Principles, SOSP ’13, 2013.

[28] T.-Y. Huang, R. Johari, N. McKeown, M. Trunnell, and M. Watson. A Buffer-
based Approach to Rate Adaptation: Evidence from a Large Video Streaming
Service. In Proceedings of the ACM Conference on Special Interest Group on
Data Communication, SIGCOMM, 2014.

[29] S. Jain, A. Kumar, S. Mandal, J. Ong, L. Poutievski, A. Singh, S. Venkata, J. Wan-
derer, J. Zhou, M. Zhu, J. Zolla, U. Hölzle, S. Stuart, and A. Vahdat. B4: Ex-
perience with a globally-deployed software defined wan. SIGCOMM Comput.
Commun. Rev., 43(4), Aug. 2013.

[30] J. Jiang, V. Sekar, and H. Zhang. Improving Fairness, Efficiency, and Stability
in HTTP-based Adaptive Video Streaming with FESTIVE. In Proceedings of
the ACM International Conference on Emerging Networking Experiments and
Technologies, CoNEXT, 2012.

[31] G. Ke, Q. Meng, T. Finley, T. Wang, W. Chen, W. Ma, Q. Ye, and T.-Y. Liu.
Lightgbm: A highly efficient gradient boosting decision tree. In Advances in
Neural Information Processing Systems 30, 2017.

[32] V. Kirilin, A. Sundarrajan, S. Gorinsky, and R. K. Sitaraman. Rl-cache: Learning-
based cache admission for content delivery. In Proceedings of the 2019 Workshop
on Network Meets AI & ML, NetAI’19, 2019.

[33] D. Lee, J. Choi, J.-H. Kim, S. H. Noh, S. L. Min, Y. Cho, and C. S. Kim. On the
existence of a spectrum of policies that subsumes the least recently used (lru) and
least frequently used (lfu) policies. In Proceedings of the 1999 ACM SIGMETRICS
International Conference on Measurement and Modeling of Computer Systems,
SIGMETRICS ’99, 1999.

[34] J. Liu and B. Li. A qos-based joint scheduling and caching algorithm for multime-
dia objects. World Wide Web, 2004.

[35] H. Mao, R. Netravali, and M. Alizadeh. Neural Adaptive Video Streaming with
Pensieve. In Proceedings of the ACM Conference on Special Interest Group on
Data Communication, SIGCOMM, 2017.

[36] N. Megiddo and D. S. Modha. ARC: A Self-Tuning, Low Overhead Replacement
Cache. In Proceedings of the 2Nd USENIX Conference on File and Storage
Technologies, FAST ’03.

[37] A. Narayanan, S. Verma, E. Ramadan, P. Babaie, and Z.-L. Zhang. Deepcache: A
deep learning based framework for content caching. In Proceedings of the 2018
Workshop on Network Meets AI & ML, NetAI’18, 2018.

[38] E. J. O’Neil, P. E. O’Neil, and G. Weikum. The LRU-K Page Replacement
Algorithm for Database Disk Buffering. In Proceedings of the 1993 ACM SIGMOD
International Conference on Management of Data, SIGMOD ’93, 1993.

[39] S.-H. Shen and A. Akella. An information-aware qoe-centric mobile video cache.
In Proceedings of the 19th Annual International Conference on Mobile Computing
& Networking, MobiCom ’13, 2013.

[40] K. Spiteri, R. Urgaonkar, and R. K. Sitaraman. BOLA: Near-optimal Bitrate Adap-
tation for Online Videos. In Proceedings of the IEEE International Conference on
Computer Communications, INFOCOM, 2016.

[41] K. Suksomboon, S. Tarnoi, Y. Ji, M. Koibuchi, K. Fukuda, S. Abe, M. Nakamura,
M. Aoki, S. Urushidani, and S. Yamada. Popcache: Cache more or less based on
content popularity for information-centric networking. 10 2013.

[42] O. Verscheure, C. Venkatramani, P. Frossard, and L. Amini. Joint server scheduling
and proxy caching for video delivery. Proceedings of WCW 2001, 2001.

[43] X. Yin, A. Jindal, V. Sekar, and B. Sinopoli. A Control-Theoretic Approach for
Dynamic Adaptive Video Streaming over HTTP. In Proceedings of the 2015 ACM
Conference on Special Interest Group on Data Communication, SIGCOMM ’15,
London, United Kingdom, 2015.

[44] N. E. Young. The K-Server Dual and Loose Competitiveness for Paging. CoRR,
cs.DS/0205044, 2002.

317

https://github.com/dasebe/webcachesim
https://github.com/Dash-Industry-Forum/dash.js
https://golang.org/
https://github.com/golang/go/wiki/Performance
https://github.com/golang/go/wiki/Performance
https://golang.org/pkg/runtime/
https://www.jwplayer.com/
https://github.com/CMU-CORGI/LHD
https://www.sandvine.com/downloads/general/global-internet-phenomena/2014/2h-2014-global-internet-phenomena-report.pdf
https://www.sandvine.com/downloads/general/global-internet-phenomena/2014/2h-2014-global-internet-phenomena-report.pdf
https://www.sandvine.com/downloads/general/global-internet-phenomena/2014/2h-2014-global-internet-phenomena-report.pdf
https://www.cisco.com/web/about/ac79/docs/sp/Online-Video-Consumption_Consumers.pdf
https://www.cisco.com/web/about/ac79/docs/sp/Online-Video-Consumption_Consumers.pdf
http://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/mobile-white-paper-c11-520862.html
http://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/mobile-white-paper-c11-520862.html

	Abstract
	1 Introduction
	2 Properties of Video Delivery
	3 AViC Design
	3.1 Overview and Challenges
	3.2 Eviction Policy
	3.3 Admission Control
	3.4 Performance Optimizations

	4 Evaluation
	4.1 Methodology
	4.2 Performance Comparison
	4.3 Ablation Study
	4.4 Time and Memory Complexity
	4.5 Sensitivity Analysis

	5 Discussion
	6 Related Work
	7 Conclusion
	References

