
Coal Not Diamonds: How Memory Pressure Falters Mobile Video
QoE

Talha Waheed†
LUMS

Zahaib Akhtar‡
Amazon Prime Video

Ihsan Ayyub Qazi
LUMS

Zafar Ayyub Qazi
LUMS

ABSTRACT
The popularity of video streaming on smartphones has led to rising
demands for high-quality mobile video streaming. Consequently,
we are observing growing support for higher resolution videos (e.g.,
HD, FHD, QHD) and higher video frame rates (e.g., 48 FPS, 60 FPS).
However, supporting high-quality video streaming on smartphones
introduces new challenges—besides the available network capacity,
the smartphone itself can become a bottleneck due to resource con-
straints, such as low available memory. In this paper, we conduct
an in-depth investigation of memory usage on smartphones and
its impacts on mobile video streaming. Our investigation – driven
by a combination of a user study, user survey, and experiments
on real smartphones – reveals that (i) most smartphones observe
memory pressure (i.e., low available memory scenarios), (ii) mem-
ory pressure can have a significant impact on mobile video QoE
when streaming high-quality videos, e.g., resulting in the mean
frame drop rate of 9-100% across smartphones and significantly
lower user ratings, and (iii) the drop in mobile video QoE happens
primarily due to the way in which video processes interact with
kernel-level memory management mechanism, with opportunities
for improving mobile video QoE through better adaptation by video
clients.

CCS CONCEPTS
• General and reference → Measurement; Experimentation;
• Human-centered computing → Ubiquitous and mobile de-
vices;

KEYWORDS
Mobile Video Streaming, Memory Pressure, Smartphones
ACM Reference Format:
Talha Waheed†, Zahaib Akhtar‡, Ihsan Ayyub Qazi, and Zafar Ayyub Qazi.
2022. Coal Not Diamonds: HowMemory Pressure Falters Mobile Video QoE.

† Talha Waheed is currently at UIUC. The work was completed while he was at LUMS.
‡ Work done for this paper is not related to Amazon employment.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
CoNEXT ’22, December 6–9, 2022, Roma, Italy
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9508-3/22/12. . . $15.00
https://doi.org/10.1145/3555050.3569120

In The 18th International Conference on emerging Networking EXperiments
and Technologies (CoNEXT ’22), December 6–9, 2022, Roma, Italy. ACM, New
York, NY, USA, 14 pages. https://doi.org/10.1145/3555050.3569120

1 INTRODUCTION
Smartphones have become the primary devices for watching videos
online [6]. In 2021, smartphones accounted for 63% of YouTube
watch time worldwide [7]. Consequently, we are witnessing rising
demands for high quality videos resulting in growing support for
higher resolution videos (e.g., HD, FHD, QHD) and higher video
frame rates (e.g., 48 FPS, 60 FPS). However, supporting such video
types on smartphones introduces new challenges—besides the avail-
able network capacity, the smartphone itself can become a bottle-
neck due to resource constraints, such as low available memory.

In this paper, we conduct an in-depth investigation of memory
usage on smartphones and its impact on mobile video streaming.
Specifically, our study sheds light on the following questions: (i)
how frequently do smartphones—based on users’ natural usage
patterns—experience memory pressure (low memory situations)?
(ii) what is the impact of memory pressure on mobile video stream-
ing performance? and (iii) how do system-level mechanisms for
managing memory pressure in smartphones interact with video
clients? We focus this study on Android devices as Android is the
most popular mobile operating system today with more than 70%
market share worldwide [14].

To shed light on the first question, we conduct an IRB approved
user study involving 80 consenting participants and monitor the
memory state of their smartphones for a period ranging from 1 to
18 days. Our study includes smartphones from 12 different manu-
facturers and a total of nearly 9950 hours of logged memory data.
Our study shows that devices often operate under high memory
utilization and most devices observe high memory pressure signals.
In particular, 80% of the devices in our study had a median memory
utilization of at least 60%, 63% experienced some form of memory
pressure, and 19% of the devices received more than 10 memory
pressure signals every hour on average, notifying critically low
memory from the operating system (see Table 1). These insights,
coupled with the popularity of video streaming on smartphones,
makes it important to analyze the impact of memory pressure on
video streaming performance.

To assess the impact of memory pressure on video performance,
we perform controlled video experiments on multiple real smart-
phones, whose specifications cover a wide range of smartphones. To
quantify video performance, we measure client-level metrics (e.g.,
frame drop rate and client crash rate) as well as report user ratings

307

https://doi.org/10.1145/3555050.3569120
https://doi.org/10.1145/3555050.3569120
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3555050.3569120&domain=pdf&date_stamp=2022-11-30


CoNEXT ’22, December 6–9, 2022, Roma, Italy T. Waheed et al.

derived from a survey. Our study shows that smartphones can expe-
rience significant frame drops under high memory pressure; with
mean frame drop rates ranging from 9%-100% across smartphones,
when streaming a 60 FPS video at 1080p resolution. In particular,
an entry-level smartphone (1GB RAM) experienced a frame drop
rate of more than 75% on average for high resolution videos (720p,
1080p) and frequent crashes whereas a medium-end device (2 GB
RAM) and a higher end (3 GB RAM) device experienced frame drop
rates of up to 25% and 9% for 1080p videos, respectively. Our user
survey involving 99 participants—who were shown videos under
normal and moderate memory pressure states—shows that users
assigned a significantly lower mean opinion score (MOS) to videos
streamed under memory pressure.

To understand why video performance degrades under mem-
ory pressure, we perform fine-grained system-level analysis, using
Google’s system profiling tool, Perfetto [19]. Our investigation
reveals how frame drops occur primarily due to the way video
processes interact with kernel memory management daemons (e.g.,
lmkd, kswapd) responsible for finding free memory and managing
disk I/O (e.g., mmcqd). We find the waiting time of video processes
increases significantly under memory pressure, e.g., the time spent
by video processes in preempted state increased by 97.8% under
moderate memory pressure.

The findings of our study have implications for different stake-
holders in the mobile video streaming ecosystem. First, our work
shows that incorporatingmemory pressure as a feature in the design
of future video adaptation algorithms can lead to improved perfor-
mance.1 Second, we find that memory pressure signals generated by
the operating system to notify applications can be effectively used
by video adaptation algorithms for reacting to memory pressure.
Third, we identify two video features, namely video bitrate and
frame rate, whose adaptation under memory pressure can lead to
significant improvement in video QoE.

For Internet video platforms, our work has two important impli-
cations. First, providers should collect memory pressure signals as
it has a role to play in determining client-side QoE. This additional
visibility can help better disambiguate the complexities associated
with troubleshooting client performance issues in the wild [26].
Second, platforms should consider offering a wider range of video
encodings (e.g., bitrates and frame rates) to improve video QoE
especially for low-end and medium-end smartphones.

For mobile operating systems, our study suggests that there is
scope for reducing the interference caused bymemorymanagement
daemons through improved scheduling. For example, we observe
that kswapd frequently switches cores, however, if the allocation
of cores is coordinated between daemons and video processes, re-
duced context switching overhead can potentially lead to improved
performance. Finally, our work shows that video QoE can be im-
proved under memory pressure if devices were equipped with more
CPU resources (e.g., greater number of cores or cores with higher
frequency). However, doing so can increase the manufacturing cost
of smartphones. Table 1 provides a summary of our key insights.

1Video adaptation algorithm, such as adaptive bitrate algorithms, have traditionally
focused on network bottlenecks (e.g., [24, 32, 35]), which are coupled with coarse-
grained device-level measures (e.g., capping the maximum video resolution based on
device screen resolution [21]).

To the best of our knowledge, this is the first study that ana-
lyzes the impact of memory pressure on mobile video performance.
Altogether, we make the following key contributions.
• Understanding real-world memory usage on smartphones:
We conduct a user study involving 80 users to understand how
frequently mobile devices experience memory pressure, based on
their natural usage patterns. As part of this study, we developed
an Android application that can capture memory pressure sig-
nals from the kernel and record memory statistics. Based on the
collected data, we share insights about the memory consumption
of devices, their memory pressure state, and the time devices
spent in high memory pressure states (§3).

• Impact of memory pressure on video QoE: To quantify the
impact of memory pressure on mobile video QoE, we conduct
controlled video streaming experiments undermemory pressure—
across different resolutions, frame rates, and video genres on
three different smartphones with different memory/CPU con-
figurations. We measure video client’s rendering performance
as well as conduct a user survey with 99 participants to capture
actual user-perceived video QoE (§4).

• Interaction effects of OS mechanisms on video QoE: We
quantify the interference caused by kernel-level memorymanage-
ment and disk I/O processes, such as kswapd, lmkd, and mmcqd,
and study their interaction effects with video streaming under
high memory pressure (§5).

• Discussion on how video QoE can be improved under mem-
ory pressure:We demonstrate potential opportunities for im-
proving mobile QoE under memory pressure that involve adapt-
ing the video frame rate and/or the video bit rate. We also discuss
other future directions, including, OS-level memory management
and scheduling schemes (§7).
To make our work easy to reproduce, we have made our survey

data, mobile app, experimental logs, and evaluation scripts available
online in a public repository2 (see Appendix A).

2 ANDROID MEMORY MANAGEMENT
Physical memory. The memory of a device is divided into fixed
size pages that can be used by different processes. Typically, a page is
4 KB of memory. There are two types of pages: (1) used pages, which
are being actively used by processes, and (2) free pages, which are
pages that are not being used for anything. Used pages are further
divided into cached pages (i.e., pages that are backed by a file in
storage)3 and (ii) anonymous pages, which are not backed by any
file in storage. Note that system memory is used by both the CPU
and the device GPU (if any) [17].
Memorymanagement.Memory pressure refers to a state inwhich
the device is short on memory thereby requiring the operating sys-
tem to free memory by throttling or killing less important processes.
Memory pressure increases when the memory usage of an applica-
tion grows or a user ends up opening too many applications in the
system. To avoid application crashes as well as poor user-perceived
performance, Android makes use of two system daemons to deal
with low memory situations: (i) the kernel swap daemon (kswapd)

2https://github.com/nsgLUMS/mobileVideo
3These could either be pages used by user-level apps—whose size is denoted by cached
PSS—or the kernel, whose size is denoted by cached kernel in Android.

308

https://github.com/nsgLUMS/mobileVideo


Coal Not Diamonds: How Memory Pressure Falters Mobile Video QoE CoNEXT ’22, December 6–9, 2022, Roma, Italy

Key Insights Description
(1) Frequency of memory pressure signals 63% of the smartphones in our user study experienced some form of memory pressure. We also observe that 19% of the devices received more than

10 memory pressure signals every hour on average, notifying critically low memory.
(2) Time spent in low memory states 10% of the smartphones in our study spent > 50% of the time in high memory pressure states and 35% spent ≥ 2% of the time in such states.
(3) Impact of memory pressure on frame drops Entry-level smartphone (1 GB RAM) experienced more than 75% average frame drops for high resolution videos (720p, 1080p) and frequent crashes.

Nexus 5 (2 GB RAM) experienced average frame drops up to 25%.
(4) Impact of memory pressure on subjective quality
of experience (QoE)

Our user survey with 99 participants, which we conducted for capturing user-perceived video QoE related to frame drops, showed that users’
experience degraded significantly under high memory pressure.

(5) Why video QoE degrades? We find that the waiting time of video processes increased significantly under memory pressure due to interference from system daemons responsible
for finding free memory and managing disk I/O (e.g., time spent in Runnable (Preempted) state increased by 97.8% in moderate memory pressure
compared to the normal state).

(6) Opportunities for improvement We show that mobile video QoE can be improved by adapting frame rate and/or bit rate. We also show that memory pressure signals that are
generated by the OS can be effectively used for reacting to memory pressure.

Table 1: Key insights from our user study, user survey, and the experimental evaluation.

and (ii) low-memory killer daemon (lmkd) [13]. When the amount
of free memory falls below a certain threshold, kswapd starts to
reclaim used memory in the background.4 If kswapd cannot free
enough memory, the system sends memory pressure signals (e.g.,
using OnTrimMemory() in Android) to applications to ask them to
reduce their memory allocations. If this is not sufficient and the
amount of free memory falls even further, lmkd becomes active and
starts killing processes in order of their priorities to make more free
memory available [13, 31]. This means that under high memory
pressure regimes, a video client application may have to operate
alongside the background activity of kswapd, and will be susceptible
to getting killed by lmkd.
Memory pressure signals for applications. Android generates
different memory pressure signals to which applications can listen
and respond by reducing their memory usage. These signals are
generated when kswapd is not able to find enough free memory
and are represented by multiple levels, which indicate the degree of
memory pressure on a device. For foreground/running apps, these
levels include: Moderate, Low, and Critical [5].5 The Moderate sig-
nal is generated when the device is running moderately low on
memory and kswapd has already started reclaiming cached memory
but the application is not yet killable. The Low signal is generated
when the lack of available memory will directly impact the fore-
ground app’s performance. Finally, the Critical signal is generated
when the system is unable to keep almost any background process
running, which can further degrade performance and eventually
lead to the killing of the foreground app itself.6

Direct reclaim and thrashing. If despite the mechanisms used by
memory management daemons, there is insufficient free memory
available to allocate to a process, direct reclaim occurs [2]. The
kernel responds by blocking the allocation until it can free up the
memory requested to be allocated. This often requires disk I/O to
flush out a modified storage-backed page or wait for lmkd to kill a
process. This can cause an extra I/O wait in any thread, including
the foreground application’s main UI thread. Besides direct reclaim,
another risk associated with low memory is thrashing [30]. This is

4kswapd reclaims unmodified cached pages memory pages by simply deleting them
from memory as they are storage-backed. It reclaims modified cached pages, and
anonymous pages by compressing them to zRAM, which serves as an in-memory swap
space in Android.
5Under normal conditions, the memory pressure state referred to as ‘Normal’.
6More specifically, Android generates these memory pressure events by tracking the
number of cached/background processes in the least-recently used (LRU) list. Because
Android tries to aggressively cache processes at all times, a decreasing number of
cached processes indicate increasing memory pressure. On a 1GB RAM Nokia 1 device
using Android 10 (Go edition), the threshold for Moderate, Low, and Critical events
are set to 6, 5, and 3 cached/empty processes respectively.

Playing
games

Listening
to music

Streaming
videos

5
4

3
2

1
Fr

eq
ue

nc
y

1 16 24

2 9 13

5 8 7

18 8 2

22 7 2

Multitasking
with > 1 apps

Multitasking
with > 2 apps

5
4

3
2

1

26 13

8 12

5 9

7 6

2 8
0

5

10

15

20

25

Nu
m

be
r o

f u
se

rs

Figure 1: The heatmaps show, on a scale of 1-5, how frequently users
engage in certain activities on their device.

a state of very frequent page faults, i.e., the kernel has to frequently
pay disk I/O to bring recently deleted/flushed out storage-backed
pages back into memory. Disk I/O involves kernel daemons like
mmcqd, whichmanages queued I/O operations on storage, to kick in.
Increased running ofmmcqd can be critical as it is strictly prioritized
over foreground processes and therefore can steal CPU time from
them. Such I/O waits or stolen CPU times can be crucial for video
client applications as video frames have to be rendered in real-time
and a delay can cause frames to be dropped.
Killing of processes. Android classifies processes into different
priority groups based on their expected responsiveness [22], each
of which is assigned a score called oom_adj score based on the
process priority, size of occupied memory and other factors. Low
priority processes are assigned higher scores. When choosing to
kill a process, lmkd picks the process with the highest oom_adj
score. Internally, lmkd relies on memory pressure signals from the
kernel to decide which process groups (i.e., processes with certain
oom_adj scores) become eligible to be killed. The memory pressure,
which is an estimate of memory utilization, is calculated as: 𝑃 =

(1 − 𝑅/𝑆) ∗ 100, where 𝑅 and 𝑆 are the number of reclaimed cached
pages and the number of scannedmemory pages, respectively. Thus,
if most pages can be reclaimed, 𝑃 would be low. However, if the
number of cached pages decreases, this will lead to high memory
pressure regimes signifying that the system is running under low
memory. When 60 < 𝑃 < 95, processes with high oom_adj become
eligible to be killed whereas when 𝑃 ≥ 95, foreground apps become
eligible to be killed.

3 USER STUDY OF MOBILE DEVICES
In order to quantify how frequently mobile devices experiencemem-
ory pressure based on users’ natural usage patterns, we conducted a
user study involving several Android devices. We recruited 80 users

309



CoNEXT ’22, December 6–9, 2022, Roma, Italy T. Waheed et al.

40 45 50 55 60 65 70 75 80 85 90
Memory Utilization (%)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

Figure 2: The CDF of the median RAM utilization across mobile
devices in our study.

and tracked the memory state of their smartphones over time. 81.3%
of our users were under 25 years of age, 13.3% between 25-50 years
of age and 5.4% were above 51 years in age. Most of the participants
in our study were either university students or staff members. Our
study included smartphones from 12 different manufacturers and a
total of about 9950 hours of logged memory data, which equals to
an average observation period of 124 hours per smartphone. The
total device memory for the surveyed devices ranged from 1GB to
8GB. Before conducting this study, we obtained user consent for
installing the application and informed the users about the exact
information that will be collected from their devices. In addition,
we also conducted a short survey from the study participants to
inquire about their device usage patterns. The study was approved
by the the Institutional Review Board (IRB) of the host institution.
User study methodology. We developed an Android application,
SignalCapturer, that records the memory usage patterns of An-
droid devices. The application was made available on Google Play
Store from where the users installed the application. We have made
the source code of the application public (see Appendix A). The
information our application collects periodically (every second) in-
cludes the amount of available memory, current memory pressure
state of the device (e.g., Moderate, Critical), whether the device is
in interactive state, and the number of running services. We also
collected information about the device’s total memory, manufac-
turer, Android version, and the number of CPU cores. However,
our application could not collect information about when a video
was being streamed on the device. This is because, to maintain
user privacy, Android does not allow an application to know which
other applications are running on the device [18]. Therefore our
findings in this user study hold for the general device workload,
and are not specific to video streaming. However, we find through
a survey of the users who installed the application that videos were
very frequently streamed on the devices (see the paragraph on Ap-
plication Usage Patterns below). SignalCapturer has a negligible
CPU and memory footprint; on an entry-level smartphone with
1GB RAM (Nokia 1), it has a mean memory footprint of 17MB and
a mean CPU usage of 0.3%.
Data cleaning and reporting.When reporting results from our
study, we only include user devices for which we have more than
10 hours of memory data in interactive state (i.e, when the device
screen is on). We do this to ensure that we have a reasonable sample
of each user’s memory data and that our analysis is not affected by
log entries when the device is in idle state. This resulted in 48 users,
each with more than 10 hours of memory data in interactive state.

0 1 2 3 4 5 6 7 8 9
RAM Size (GB)

0
10
20
30
40
50
60

Fr
eq

. o
f S

ign
als

 (h
ou

rs
⁻¹)

Moderate Signals

0 1 2 3 4 5 6 7 8 9
RAM Size (GB)

0
10
20
30
40
50
60

Low Signals

0 1 2 3 4 5 6 7 8 9
RAM Size (GB)

0
10
20
30
40
50
60

Critical Signals

Figure 3: Frequency of memory pressure events across devices.

0 1 2 3 4 5 6 7 8 9
RAM Size (GB)

0
10
20
30
40
50
60
70

%
ag

e 
Ti

m
e 

Sp
en

t (
%

)

In Moderate

0 1 2 3 4 5 6 7 8 9
RAM Size (GB)

0
10
20
30
40
50
60
70

In Low

0 1 2 3 4 5 6 7 8 9
RAM Size (GB)

0
10
20
30
40
50
60
70

In Critical

Figure 4: Percentage of time spent by mobile devices in our dataset
in different memory pressure states.

Application Usage Patterns. We conducted a short survey from
users who installed our mobile application to inquire about their
device usage patterns. Users were asked to rate their frequency
of usage, on a scale from 1 to 5, of three activities: playing games,
listening to music, and streaming videos. We found that streaming
videos was the most frequent activity followed by listening to music
as shown in Figure 1. In addition, we asked how often theymultitask,
on a scale from 1 to 5, with more than one and two applications in
the background. We find that multitasking is common with a large
fraction of users reporting that they multitask with more than two
applications running in the background.

Distribution of memory utilization. Figure 2 shows the CDF
of the median RAM utilization across all the 48 devices. Observe
that 80% of the devices had a median memory utilization of at least
60% whereas 20% of the devices experienced a median utilization of
more than 75%. In the regime, when the memory utilization is 60%
or more, the system marks certain process categories as kill-able
based on oom_adj scores and kswapd can become active if free
memory falls below a certain threshold.

Frequency of memory pressure signals. Next, we consider the
frequency of different memory pressure signals generated by the
devices. Figure 3 shows scatter plots of the frequency of receiving
memory pressure signals on the y-axis (in terms of the number
of signals per hour) as a function of RAM size of devices in our
dataset across different memory pressure states. We find that 63%
of the devices in our survey received at least one Moderate, Low, or
Critical memory signal per hour. We also observe that 19% of the
devices receive more than 10 Critical memory signals per hour and
17% of the devices receive more than 10 Moderate signals per hour.
A small number of devices (6.3%) received more than 70 (Moderate,
Low, and/or Critical) memory signals per hour.

310



Coal Not Diamonds: How Memory Pressure Falters Mobile Video QoE CoNEXT ’22, December 6–9, 2022, Roma, Italy

Xiaomi
(3 GB)

Nokia
(3 GB)

Huawei
(1 GB)

Samsung
(3 GB)

Xiaomi
(3 GB)

Device Manufacturer

0
250
500
750

1000
1250
1500
1750

Av
ail

ab
le 

M
em

or
y (

M
B)

at all times at Moderate Signal at Low Signal at Critical Signal

Figure 5: A violin plot showing the distribution of available memory
across memory states for five devices that spent the most time in
high memory pressure states.

Time spent in different memory pressure states. Figure 4
shows the fraction of time spent in high memory pressure states as
a function of the RAM size of the devices. The figure shows that
27% of the devices spent ≥ 2% of the time in Moderate memory
pressure state and 10% of the devices spent more than 4% time in
Critical memory pressure state. There were two devices that spent
more than 40% of the time in Critical memory.
Distribution of available memory. Finally, we show the distri-
bution of available memory, which is the sum of free and cached
bytes, across different memory states, for five devices that spent
the largest fraction of time out of Normal memory state (see Figure
5). This is important because low memory thresholds that trigger
kswapd and lmkd, and lead to generation of different memory pres-
sure signals can differ across devices based on device memory as
well as due to vendor-specific customizations. We make three ob-
servations from our data: (i) the available memory corresponding
to each memory pressure signal has a significant spread indicating
large variations in memory allocations by applications, (ii) across
different memory pressure events, the mean available memory is
generally lowest for Critical, followed by Low and then Moderate
states7, and (iii) the available memory at which different memory
events get generated differs across devices, reflecting both vendor
choices as well as device memory (e.g., we observed that devices
from the same vendors had higher available memory thresholds for
generating memory pressure events if they had larger RAM sizes).
Transitions between different memory pressure states. Fig-
ure 6 shows the trend of transitions from one memory pressure
state to the next.8 The upper row of bar plots show that when
devices move into a particular memory pressure state, what is the
next memory pressure state they move into. Specifically, the fig-
ure shows the percentage of times the devices move to a given
memory pressure state. The bottom row of boxplots shows the
durations of times devices spend in a particular memory pressure
state before moving to some other memory pressure state next. The
figure shows that high memory pressure regimes persist for a long
time. For example, observe that after the Critical memory pressure
7One exception is the 3GB Nokia device in our dataset for which the mean available
memory is reported to be larger at Critical memory pressure. We conjecture that by
the time our mobile app records the memory metrics, the operating system may have
already reclaimed a large amount of memory, thus resulting in overestimation of the
available memory.
8The data shown in Figure 6 is from the nine devices in our study that remained in
non-normal memory pressure states for more than 30% of the time.

Normal Low Critical
Next memory state

0
10
20
30
40
50
60
70
80

Pe
rc

en
ta

ge
 (%

)

After 'Moderate'
signal is received

Normal Moderate Critical
Next memory state

0
10
20
30
40
50
60
70
80

Pe
rc

en
ta

ge
 (%

)

After 'Low'
signal is received

Normal Moderate Low
Next memory state

0
10
20
30
40
50
60
70
80

Pe
rc

en
ta

ge
 (%

)

After 'Critical'
signal is received

Normal Low Critical
Next memory state

0.125
0.25

0.5
1
2
4
8

16
32
64

Du
ra

tio
n 

sp
en

t in
 M

od
er

at
e 

(s
)

Normal Moderate Critical
Next memory state

0.125
0.25

0.5
1
2
4
8

16
32
64

Du
ra

tio
n 

sp
en

t in
 L

ow
 (s

)

Normal Moderate Low
Next memory state

0.125
0.25

0.5
1
2
4
8

16
32
64

Du
ra

tio
n 

sp
en

t in
 C

rit
ica

l (
s)

Figure 6: Statistics regarding transitions into different memory pres-
sure states after a particularmemory pressure state signal is received.

state signal is received, the devices move to another high memory
pressure state, Low, 67.2% of the times. Moreover, before moving to
Low, they remain in the Critical state for a significant duration of
12.8 s (at the 75% percentile). Only a small fraction, 13.6% of times,
do the devices move to the Normal memory pressure state after the
Critical state. This too, however, come after the devices have spent
a large duration of time, 10.8 s at the 75% percentile, in the Critical
memory pressure state. These results imply that existing kernel
mechanisms are not sufficient to alleviate memory pressure. This
motivates the need for applications to themselves act to ameliorate
their performance under memory pressure, and to improve kernel
memory management mechanisms.
Summary. Overall, our study of real smartphone users shows that
devices often operate under high memory utilization regimes, fre-
quently observe memory pressure signals, and the kernel is unable
to quickly alleviate memory pressure. These insights coupled with
the popularity of video streaming on mobile devices—as also evi-
denced from our user survey—makes it important to quantify and
analyze the impact of memory pressure on video streaming perfor-
mance.

4 IMPACT OF MEMORY PRESSURE
In this section, we evaluate the impact of memory pressure on mo-
bile video streaming QoE using controlled experiments. To quantify
video performance, we measure (video) client-level metrics (e.g.,
frame drop rate and client crash rate) as well as report ratings de-
rived from the user survey. To obtain user ratings—which capture
the actual user experience—we conducted an IRB approved study
of 99 participants, who rated the quality of their experience of
watching videos under different memory pressure states.

4.1 Experimental Methodology
Experimental Setup.We use the dash.js framework [1] to conduct
video streaming experiments similar to several earlier works (e.g.,
[23, 24, 32]). We use five different videos in our experimental eval-
uation, each of which represent different genres. The videos were
encoded by the H.264/MPEG-4 codec at different video resolutions
(240p to 1440p), frame rates (30 and 60 frames per second), and bit
rates (as recommended by YouTube [20]). The videos are divided

311



CoNEXT ’22, December 6–9, 2022, Roma, Italy T. Waheed et al.

Figure 7: The experimental setup consists of a mobile client which
connects to the video server over a WiFi LAN to stream a DASH
video.

into approximately 4 second chunks similar to earlier works [24, 32].
In our setup, as shown in Figure 7, the client video player was a
Firefox browser (running on a mobile device). Apart from Firefox,
we also conducted evaluation over the Chrome mobile browser,
and ExoPlayer—a popular media player used by Android applica-
tions [10], and reported the results in Appendix B. The video server
(Apache version 2.4.7) ran on a different machine and communi-
cated with the video player over WiFi on a dedicated LAN. The
video player was configured to have a playback buffer capacity of
60 seconds. We ensured that the network never became a bottle-
neck in the video streaming, i.e., for all video qualities, the playback
buffer filled up quickly and then remained at maximum capacity
throughout the playback duration. This allowed us to study the
impact of memory pressure on the video performance—without the
network bandwidth becoming a confounding variable. We repeated
each experiment five times and report the mean results with 95%
confidence intervals, unless stated otherwise. For single video ex-
periments, we report results for the video, ‘Dubai Flow Motion in 4K
– A Rob Whitworth Film” [8] from YouTube. At the time of writing,
the video had received over 4.4 million views on YouTube. We show
video streaming performance results for all videos in Figure 12.
Mobile devices. We conducted our evaluation on three smart-
phones with different RAM sizes: (1) Nokia 1, a popular entry-level
phone with 1GB RAM (Quad-core 1.1 GHz, 4.5in screen), (2) Nexus
5, which has 2GB RAM (Quad-core 2.33 GHz, 4.95in screen), and (3)
Nexus 6P with 3GB RAM (Octa-core 4×1.55 GHz and 4×2.0 GHz,
5.7in screen). The devices run the vendor’s Android OS distribution.
The specifications of these devices represent a wide range of smart-
phones and are categorized as low-end andmiddle-end smartphones
based on their RAM sizes [33]. According to a study of one of the
largest online social networks, in 2019 low-end (0.5-1 GB RAM) and
middle-end (1.5-3GB RAM) smartphones made up 50% of devices
in developed regions (North America, Western Europe, Australia,
Japan, and New Zealand), 75% in transitioning regions (Eastern
and Central Europe, and some Asian countries), and over 75% in
developing regions (primarily African, Latin American, and Asian
countries) [33].
Metrics and user survey. To measure the memory used by the
video client, we record the Proportional Set Size (PSS) of the applica-
tion through dumpsys [9]. PSS is composed of the private memory
of that process plus the proportion of shared memory with other
processes and is used by Android to measure an application’s mem-
ory footprint [22]. To assess the rendering quality at the video

240p 360p 480p 720p 1080p
Resolution

0
50

100
150
200
250
300
350
400
450

To
ta

l F
ire

fo
x P

SS
 (M

B)

30fps 60fps

Figure 8: The total PSS of the video client process on Nexus 5 across
different resolutions and two encoded frame rates of 30 and 60 FPS
with under no memory pressure.

client, we measure the rendered Frames Per Second (FPS) and the
corresponding frame drops. If the video client suffers from slow
rendering, it is forced to skip frames to maintain 1× rate (displaying
1 second of video per second), resulting in frame drops. When this
happens, the user will perceive stuttering in the video. To measure
the impact of memory pressure and corresponding frame drops
on overall user-perceived QoE, we conduct a user survey with 99
participants and report differential mean opinion scores (details
in §4.3). Finally, because video clients can crash under memory
pressure, we also report video client crash rates.
Emulating different memory pressure regimes. We introduce
memory pressure following the samemethodology as in [22, 34], i.e.,
through a custom (native) Android application. For this purpose we
use a publicly available application developed in a recent work [34].
This application allocates memory until a target memory pressure
regime is achieved. For example, to induce critical memory pressure,
it continues to allocate memory until it starts receiving Critical
memory pressure signals from the kernel. To conduct controlled
video streaming experiments at different memory pressure states,
we start the video streaming session after the targeted memory
pressure signal is received and do not keep any background apps.
In addition to these controlled experiments, we also conduct a
subset of experiments by exerting memory pressure organically
by opening multiple background applications and verifying our
findings from the controlled settings.

4.2 Memory footprint
We first analyze the memory footprint of the video client and eval-
uate how it changes when the video is encoded at different resolu-
tions and frame rates on the 2GB RAM device (Nexus 5). Figure 8
shows the PSS of a video at different resolutions and two encoded
frame rates with no applied memory pressure or opened back-
ground applications.9 Observe that the PSS increases significantly
with both video resolutions as well as the encoded frame rate. For
example, the mean PSS increases by nearly 125MB when moving
from 240p to 1080p, which corresponds to a average increase of
∼31.3MB when moving to the next higher resolution. Similarly,
increasing the frame rate from 30 FPS to 60 FPS resulted in a mean
increase in PSS of 20MB across video resolutions from 240p to
1080p.

9The error bars in Figure 8 represent minimum and maximum PSS values.

312



Coal Not Diamonds: How Memory Pressure Falters Mobile Video QoE CoNEXT ’22, December 6–9, 2022, Roma, Italy

240p 360p 480p 720p 1080p
Resolution

0
10
20
30
40
50
60
70
80
90

100

%
ag

e 
Fr

am
es

 D
ro

pp
ed

30fps
Started at Normal Started at Moderate Started at Critical

240p 360p 480p 720p 1080p
Resolution

0
10
20
30
40
50
60
70
80
90

100
60fps

Figure 9: The average frame drops for different video qualities and
two frame rates on a Nokia 1 smartphone.

Crash rate 30FPS, 480p 30FPS, 720p 60FPS, 480p 60FPS, 720p
Normal (%) 0 0 0 0
Moderate (%) 40 100 40 100
Critical (%) 100 100 100 100

Table 2: Video client crash rate across different memory pressure
states on a Nokia 1 device.

4.3 Video streaming under memory pressure
Next, we quantify the impact of memory pressure on video per-
formance across smartphones with different RAM sizes. To do so,
we start video streaming experiments in three different memory
pressure states: (1) Normal state, when no memory pressure signals
are received from the kernel, (2)Moderate state, when the moderate
memory pressure signal is received from the kernel, and (3) Critical
state, when the critical memory pressure signal is received from
the kernel.

Video performance over an entry-level smartphone. Figure 9
shows the percentage of frames dropped for video runs on the 1GB
RAM device (Nokia 1). According to a recent study [33], smart-
phones with 1GB or less RAM had a market share of nearly 30% in
developing regions in 2019 [33]. We note the following key trends:
• Frame drop rate increases with memory pressure. There is generally
a significant increase in the percentage of frames dropped with
increasing memory pressure. For example, when streaming a
1080p video at 30 FPS, we observed a drop rate of 19% at Normal,
53% atModerate, and nearly 100% at the Critical memory pressure
state. Under Critical memory pressure, in most cases the video
was either unplayable or the video client crashed.

• Clients experience significant crashes at high memory pressures
states. Table 2 shows the percentage of runs that experienced
crashes. We observe that at Moderate and Critical states, the
video client experienced frequent crashes. We also tested the
video performance on another identical Nokia 1 phone with the
same specs and observed the same performance, which suggests
that the smartphone was not malfunctioning.

• Frame drop rate generally increases at higher resolutions and higher
frame rates. Under memory pressure, the video client experiences
more frame drops at higher video resolutions. For example, com-
pared to 720p, streaming a 1080p video at 30 FPS increases the
drop rate by nearly 100% at Moderate memory pressure. Simi-
larly, the video client experiences more frame drops at 60 FPS.
For instance, as compared to 720p video at 30 FPS, a 60 FPS video
experiences 70% more frame drops at Moderate memory pressure.

1 2 3 4 50
5

10
15
20
25
30
35

Co
un

t

28
32

19 17

3

(Very annoying) (No difference)
Differential Mean Opinion Score

Figure 10: The differential mean opinion scores from our user sur-
vey with 99 participants. The users were asked to rate the relative
experience of watching two videos, one under Normal state and the
other under Moderate memory pressure.

240p 360p 480p 720p 1080p
Resolution

0
2
4
6
8

10
12
14
16
18
20

%
ag

e 
Fr

am
es

 D
ro

pp
ed

30fps
Started at Normal Started at Moderate Started at Critical

240p 360p 480p 720p 1080p
Resolution

0
2
4
6
8

10
12
14
16
18
20 60fps

Figure 11: The average frame drops for different video qualities and
two frame rates on a Nexus 5 smartphone.

Crash rate 30FPS, 720p 30FPS, 1080p 60FPS, 480p 60FPS, 720p
Normal (%) 0 0 0 0
Moderate (%) 10 100 0 100
Critical (%) 100 100 70 100

Table 3: Video client crash rate across different memory pressure
states on the Nexus 5 (2GB RAM) device.

Impact on overall user experience. To quantify the impact of
frame drops on actual user experience, we conducted a user study
involving 99 participants. Users were recruited from a university
campus via email and included students and staff. Users were shown
two samples of our video, each encoded at 60 FPS and 240p, but
experiencing different memory pressure states—Normal and Mod-
erate—resulting in a frame drop rate of 3% and 35%, respectively.
Users were asked to rate their relative experiences of watching the
two videos on a scale of 1-5 (with 5 denoting no noticeable differ-
ence between the two videos and 1 denoting that the second video
was very annoying with respect to the first). Figure 10 shows the
frequency distribution of differential mean opinion scores (DMOS),
which indicates that the vast majority of users found a noticeable
difference between the videos, with 60 users giving a 1 or 2 rating.
Impact on mobile devices with larger RAM. Figure 11 shows
the frame drop rate on the 2GB RAM Nexus 5 smartphone. Overall,
we observe lower yet significant frame drops relative to the 1GB
RAM smartphone. In particular, with a 30 FPS video and low video
resolutions (240p to 480p), we do not observe any frame drops.
However, at 60 FPS with high resolutions, the phone experiences
significant drops, e.g., 17% drops on average with the 1080p video
under critical memory pressure. Nexus 5 also experiences crashes
at high memory pressure as shown in Table 3. We observe similar

313



CoNEXT ’22, December 6–9, 2022, Roma, Italy T. Waheed et al.

Process State Normal (s) Moderate (s) Increase (%)
Running 69.0 63.2 -8.5
Runnable 58.2 72.4 24.2

Runnable (Preempted) 13.3 26.4 97.8

Table 4: The mean time spent by video client process threads in
different process states at Normal and Moderate memory pressure
states.

trend of frame drops on Nexus 6P (a 3GB RAM device); (i) frame
drops happen at only 720p or higher resolutions, (ii) highest frame
drops (∼9% on average) occur at 1080p resolution with a frame rate
of 60 FPS.
Performance over different videos.We also evaluated the per-
formance under memory pressure over different types of videos. In
particular, we considered five different videos from separate gen-
res; travel [8], sports [16], gaming [15], news [4], and nature [3].
Figure 12 shows the percentage of frames dropped when viewing
these five videos under different memory pressure states. The figure
shows the results from a 2GB Nexus device, at both 30 FPS and
60 FPS, with different video resolutions. We observe a similar trend
for all videos; (i) frame drops at 30 FPS are either low or negligible,
and (ii) frames drops are significant at 60 FPS and increase with
memory pressure and at higher video resolutions.
Performance under organic memory pressure. As explained
in §4.1, we emulate different memory pressure regimes in our ex-
periments through a custom Android application that allocates
memory until a target memory pressure regime is reached. To eval-
uate whether video performs similarly under memory pressure
present in the wild, we evaluated video performance under organi-
cally generated memory pressure through background applications.
We conducted our experiments on the Nokia 1 device. For Normal
memory pressure state, we did not open any background application
whereas for inducing Moderate memory pressure state we opened
8 background applications before opening the browser to run the
video. These background applications were selected from the top
free applications available on Google Play Store and did not include
any game. Similar to the synthetic memory pressure experiments,
we observe higher frame drops at higher memory pressure states.
For example, with 480p 60 FPS video, we observed that 11.7% frames
dropped at Normal memory pressure, while 30.6% frames dropped
at Moderate memory pressure. These frame drops are similar to
what we had observed under memory pressure applied through the
custom application.

5 WHY VIDEO QOE DEGRADES?
In this section, we analyze why video performance degrades under
memory pressure. To do so, we conduct a system-level trace analysis
through Google’s system profiling tool, Perfetto [19]. We report
profiling results on a 1GB RAM device (Nokia 1), whose Video QoE
is most impacted by memory pressure.10

Impact on video client processes. Table 4 shows the total time
spent by video client threads11 in different states under Moderate
pressure relative to the Normal pressure state. These states include:
10The subsequent results in this section represent video runs conducted at Normal
and Moderate memory pressure for a 480p video at 60 FPS. We conducted three runs
for each memory state and report the mean values.
11We consider three key video client threads: SurfaceFlinger, MediaCodec, and Firefox.

Normal Moderate Increase
Mean number of preemptions 378.3 10457.3 26.6 x

Mean time mmcqd runs after preemption 0.1 s 1.3 s 16.8 x
Mean time video client waits to get CPU back 0.2 s 5.4 s 27.5 x

Table 5: Mean statistics for when the kernel preempts the CPU from
some video client process thread to schedule mmcqd under Normal
and Moderate memory pressure states.

(1) Running, when a thread is running on one of the CPU cores, (2)
Runnable, when a thread is waiting to be scheduled but the CPU
is unavailable, (3) Runnable (Preempted), when a video thread is
waiting for the CPU after having been preempted by the kernel
to schedule a higher priority process. We find that under memory
pressure, video threads spent 8.5% less time running and spend
significantly more time waiting for the CPU (e.g., 24.2% more in the
Runnable state, and 97.8% more time in the Runnable (Preempted)
state) as shown in Table 4. Next, we examine which processes
are responsible for increase in the waiting times of video threads,
and how much, if at all, are these delays contributed by memory
management daemons.
Top running threads. To identify processes that contribute to the
waiting time experienced by the video client threads, we examine
the top running threads, in terms of the total duration a thread
ran during playback, under Normal and Moderate memory pres-
sure. We find there are two threads whose running time increases
significantly under Moderate memory pressure—the daemon that
manages queued I/O operations on the storage, mmcqd, and the
kernel swap daemon, kswapd (both introduced in §2). For mmcqd,
we observe that its running time increases from 0.4 s to 4.6 s and it
becomes the 6th most running thread on the mobile device (from
being the 50th most running thread under Normal). For kswapd we
observe that it runs for 2.3 s in Normal memory pressure and is
the 14th most running thread on the device. In Moderate memory
pressure however, it runs for 22 s becoming the most run thread on
the CPU. For comparison, the second-most run thread (a Firefox
thread) runs for only 7.9 s. This substantive increase is also reflected
in Figure 13 which shows the percentage of time spent by kswapd
in different process states under Normal and Moderate memory
pressure. Observe that it spends considerably less time sleeping
(75% to 31%), and substantially more time running (6% to 56%) under
Moderate memory pressure.

Preemption events. Next, we analyze the events where the kernel
preempts a video client thread in favor of some other higher priority
thread. Such events are important as they can lead to frame drops
and degrade user experience. For each such higher priority thread,
we measure: (1) the total number of preemptions, (2) the total time it
runs continuously on the CPU after the preemption, and (3) the total
time spent by client video threads waiting to use the CPU again.
We find that compared to Normal, under Moderate pressuremmcqd
shows a large increase in each of these three statistics. As shown
in Table 5, we observe that under Moderate memory pressure, the
number of preemption events involvingmmcqd increase by a factor
of 26.6×, and the total time video threads have to wait to get CPU
back increases by a factor of 27.5×. With these substantial increases,
mmcqd becomes the thread with the highest values for each of these
three statistics on the device. This is because, as discussed in §2,
disk I/O increases under memory pressure, resulting in mmcqd

314



Coal Not Diamonds: How Memory Pressure Falters Mobile Video QoE CoNEXT ’22, December 6–9, 2022, Roma, Italy

240p 360p 480p 720p 1080p
0.125

0.25
0.5

1
2
4
8

16
32

%
ag

e 
Fr

am
es

 D
ro

pp
ed

Travel/Vlog
30fps

240p 360p 480p 720p 1080p
0.125

0.25
0.5

1
2
4
8

16
32

Sports
30fps

Started at Normal Started at Moderate Started at Critical

240p 360p 480p 720p 1080p
0.125

0.25
0.5

1
2
4
8

16
32

Gaming
30fps

240p 360p 480p 720p 1080p
0.125

0.25
0.5

1
2
4
8

16
32

News
30fps

240p 360p 480p 720p 1080p
0.125

0.25
0.5

1
2
4
8

16
32

Nature
30fps

240p 360p 480p 720p 1080p
Resolution

0.125
0.25

0.5
1
2
4
8

16
32

%
ag

e 
Fr

am
es

 D
ro

pp
ed

60fps

240p 360p 480p 720p 1080p
Resolution

0.125
0.25

0.5
1
2
4
8

16
32

60fps

240p 360p 480p 720p 1080p
Resolution

0.125
0.25

0.5
1
2
4
8

16
32

60fps

240p 360p 480p 720p 1080p
Resolution

0.125
0.25

0.5
1
2
4
8

16
32

60fps

240p 360p 480p 720p 1080p
Resolution

0.125
0.25

0.5
1
2
4
8

16
32

60fps

Figure 12: Rendering performance across videos with different genres across different memory pressure states for both 30 FPS and 60 FPS
videos.

Normal Moderate
Memory State

0

20

40

60

80

100

%
ag

e 
Ti

m
e 

Sp
en

t (
%

)

Sleeping
Running

Runnable
Runnable (Preempted)

Figure 13: Percentage time spent by the kernel daemon, kswapd,
in different process states under Normal and Moderate memory
pressure states.

stealing CPU time from foreground processes as it has a higher
CPU scheduling priority.

On the other hand, in both Normal and Moderate memory states,
the CPU is almost never preempted for kswapd. This is because
while mmcqd has a strictly higher scheduling priority than fore-
ground processes, kswapd has the same priority as foreground
processes. For instance, we find that 77.9% of Firefox threads have
the same priority as kswapd. Such threads account for 76.7% of
all Firefox threads’ running time. This means that for most of the
time, Firefox threads will have to fairly share the CPU with the
CPU-hungry thread—kswapd.

Video client crashes. Another key memory management daemon
(described in §2) is lmkd, which is responsible for killing processes
to free memory. To identify when it becomes active, we tracked its
CPU utilization during video playback under Normal and Moderate
memory pressure.12 We find that it almost never becomes active
under Normal memory pressure, but frequently becomes active
under Moderate pressure often resulting in the browser, or the
12We tracked the CPU utilization through the Linux top command. Video and device
configuration remained the same as in our profiling results.

0 10 20 30 40 50 60 70 80 90
Time (s)

0
10
20
30
40
50

Fr
am

e 
Ra

te
 (s

⁻¹)
Frame Rate (s⁻¹)

0.0
0.25
0.5
0.75
1.0
1.25

LM
KD

 C
PU

 U
sa

ge
 (%

)

Video client killed by LMKD
LMKD CPU Usage

Figure 14: Frame rate and lmkd CPU utilization during a video ses-
sion which crashed due to high memory pressure.

browser tab process, that is playing the video, to get killed. As an
example, see Figure 14. It shows the instantaneous frame rate and
the CPU utilization over one such video session under Moderate
memory pressure. Notice that when we observe the video crashing
at 85 s, there is a spike in lmkd’s CPU utilization indicating that it
became active to kill the video client browser.

Performance degradation with background applications. Fig-
ure 15 shows the instantaneous rendered FPS and the number of
processes killed during a video session on Nokia 1 under organic
Normal and Moderate memory pressure (using the same setup as in
§4.3).13 The x-axis shows the time elapsed since the enter key was
pressed on the mobile device to load the webpage that contained
the video player. Observe that there were many more processes
that had to be killed during Moderate memory pressure than during
Normal memory pressure.

Summary.We find that the video processes drop frames primarily
due to two reasons: (i) interference by mmcqd, the kernel thread
that manages queued I/O operations on storage, which steals CPU

13We tracked the number of killed processes through Android’s command-line tool
logcat [12].

315



CoNEXT ’22, December 6–9, 2022, Roma, Italy T. Waheed et al.

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140
0

10
20
30
40
50
60

Re
nd

er
ed

 F
PS

 (s
⁻¹)

Normal (11.71% frames dropped)

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140
Time Elapsed (s)

0
1
2
3

No
. o

f P
ro

c-
es

se
s K

ille
d

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140
0

10
20
30
40
50
60

Re
nd

er
ed

 F
PS

 (s
⁻¹)

Moderate (30.64% frames dropped)

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140
Time Elapsed (s)

0
1
2
3

No
. o

f P
ro

c-
es

se
s K

ille
d

Figure 15: Rendered FPS and the number of processes killed over
a video run under Normal (top two plots) and Moderate memory
pressure states (bottom two plots). These memory pressure states
are generated organically by opening background applications.

cycles from video threads as it has a higher scheduling priority than
foreground processes, and (ii) high CPU utilization of the kswapd
under high memory pressure, which in turn decreases available
CPU cycles for video threads. Additionally, we observe that video
client processes crash when lmkd kills them to free memory.

6 OPPORTUNITIES FOR IMPROVEMENT
In this section, we highlight potential opportunities for improv-
ing video performance by using application level mechanisms and
memory pressure signals.
Application-level mechanisms to reduce frame-losses: There
are significant opportunities for reducing memory pressure and
improving video performance by employing application-level mech-
anisms (e.g., adapting the video resolution or the encoded frame
rate in response to memory pressure signals). Figure 16 shows the
impact of varying the encoded frame rate during a video session at
three different resolutions. We observe that a video can continue to
be rendered at high resolution by decreasing the encoded frame rate.
For example, at 1080p resolution (top sub-graph), the rendered FPS
is zero when the frames are encoded at 60 FPS, however, the frame
losses reduce to about zero when we switch to 24 FPS. However,
across resolutions, there are different encoded frame rates that may
be best suited for a specific video under a given device memory
state. Deciding on which combination of resolution and encoded
frame rate will yield the best performance may also depend on the
specific type of video and needs more comprehensive investigation.
We leave this for future work.
Using memory pressure signals to dynamically adapt video:
We show that memory pressure signals received by applications can
be used as a potential signal for adapting the video (e.g., switching
to different encoded frame rate or resolution). Figure 17 shows the

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 110
Time (s)

0
10
20
30
40
50
60

FP
S 

(s
⁻¹)

1080p
Rendered FPS
Selected FPS

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 110
Time (s)

0
10
20
30
40
50
60

FP
S 

(s
⁻¹)

720p
Rendered FPS
Selected FPS

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 110
Time (s)

0
10
20
30
40
50
60

FP
S 

(s
⁻¹)

480p
Rendered FPS
Selected FPS

Figure 16: The impact of varying frame rate across different video
resolutions on a Nokia 1 device. For each video resolution, the en-
coded frame rate was varied between 24, 48, and 60 FPS.

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 110
Time (s)

0
10
20
30
40
50
60

FP
S 

(s
⁻¹)

Rendered FPS
Selected FPS

Figure 17: The impact of varying the video frame rate under Moder-
ate memory pressure on a Nokia 1 device. The video is encoded at
480p and the encoded frame rate varies between 60, 24, and 48 FPS.

rendered FPS in a video run under Moderate memory pressure if we
vary the frame-rate between 60, 24 and 48. The memory pressure
was introduced organically through background applications as
done before in §4.3. Observe that there are significant drops in FPS
when 60 FPS is selected. However, we can mitigate these losses if
decrease the frame rate to 24 FPS.

7 DISCUSSION
The results and insights have important implications for different
stakeholders in the Internet video streaming ecosystem. We discuss
below the broader implications.
Implications for Internet Video Providers. Keeping in view
the potential impact of device-level bottlenecks, our work has two
important implications for Internet Video providers. First, providers
should measure device memory conditions as it has a role to play in
determining client-side QoE. This additional visibility into device
memory pressure can help better disambiguate the complexities
associated with troubleshooting client performance issues in the
wild [26]. To achieve this, providers can augment their routinely

316



Coal Not Diamonds: How Memory Pressure Falters Mobile Video QoE CoNEXT ’22, December 6–9, 2022, Roma, Italy

collected client side telemetry (e.g., average network throughput)
by capturing memory pressure signals as well. Second, Internet
Video providers should consider offering a larger range of video
encodings to adapt not only video resolutions but also the framerate.
Most providers today construct bitrate ladders to enable smooth
playback over variable network conditions and do not consider
device limitations [28, 29]. As evidenced by our work, this can lead
to sub-optimal performance especially for low-end and medium-
end smartphones. As such, video providers should consider offering
resolutions that vary over a range of frame rates. Low-end devices
can then select lower frame rate streams thereby reducing the
memory and computational footprint to achieve improved playback.
For example, we have observed that modulating the video frame rate
based on memory pressure signals can improve video performance.
Video Adaptation Algorithms. Given that device resources, such
as memory, can become potential bottlenecks for video streaming
performance, bitrate adaptation algorithms—which traditionally
have focused on network bottlenecks [24, 32, 35] and coarse-grained
device-level measures (e.g., capping the maximum video resolution
based on device screen resolution [21])—should explicitly account
for multiple bottleneck resources (e.g., memory, CPU, and network)
in their design. These enhanced algorithms can then be rolled out
with relative ease through application-level mechanisms such as
regular over-the-air application updates to achieve performance
improvements for memory constrained devices.
Video client implementations.Video players can run atop browsers
or as custom mobile applications. Consequently, the memory pres-
sure induced by a video client is bundled with the memory overhead
of the underlying implementation platform (e.g., browser or a mo-
bile app). While our experimental evaluation was carried out over
the mobile Firefox browser, we find that Chrome and a video mobile
app (implemented over ExoPlayer, which is an application-level
media player for Android [10]) induces a lower memory overhead.
A lower memory overhead does help in improving performance
but is insufficient to prevent frame drops and application crashes;
see Appendix B for evaluation results for a video mobile app and
Chrome. Moreover, video client-level mechanisms that we explored
in this work are complementary to optimizations in the browser
and mobile app implementations.
OS developers.Mobile operating systems, such as Android, employ
system daemons (e.g., lmkd, kswapd, andmmcqd) to make available
more free memory. However, we show that they can frequently
interfere with video processes especially under high memory pres-
sure. Moreover, our study suggests that there is scope for reducing
this interference with improved scheduling of system daemons and
video processes. For example, we observe that kswapd frequently
switches cores, however, if the allocation of cores is coordinated
between daemons and video processes, reduced context switching
overhead can potentially lead to improved performance.
Original Equipment Manufacturers. Our work highlights the
importance of having sufficient CPU resources under high memory
pressure regimes. For entry-level phones, this indicates that allo-
cating more CPU resources even with a small RAM can improve
video performance under memory pressure. This insight is com-
plementary to an earlier study focusing on Web browsing under
memory pressure [34].

8 RELATEDWORK
Measurement studies on low-end mobile devices. Recent stud-
ies [25, 33, 34] have investigated the impact of low-end devices on
mobile QoE.

Dasari et al. [25] study the impact of device hardware capabil-
ities on the performance of web browsing, video streaming, and
video telephony. They find that web browsing is more sensitive
to low-end hardware than video streaming. This is because un-
like web browsing, video applications can exploit specialized co-
processors/accelerators and thread-level parallelism on the multi-
ple cores present on low-end devices. This analysis, however, is
for performance under normal memory conditions. Our study on
the other hand investigates video streaming performance under
memory pressure and finds that memory pressure can significantly
affect video streaming in low-end devices due to interference with
kernel-level daemons.

Nasser et al. [33] present a large-scale longitudinal study of An-
droid device RAM resources and show that, contrary to intuition,
the memory gap between devices in developed and developing re-
gions is not diminishing but widening. Consequently, they try to
optimize web browsing performance on low-end devices through a
system that trims page content in a way that balances page func-
tionality against memory usage. Note that, similar to Dasari et
al. [25], they do not consider memory pressure. Our study uses
the longitudinal study for building motivation, but instead of web
browsing, focuses on video streaming performance under memory
pressure.

Qazi et al. [34] perform a study similar to ours, but in the context
of Web browsing. They analyze the memory usage of mobile web
browsers and find that the browser memory footprint can be orders
of magnitude larger than the corresponding Web page sizes. This
can lead to slow browsing performance and/or Web page crashes
when a device is running low on memory. They propose debloating
JS and using memory-efficient image formats to reduce the mem-
ory footprint of Web pages and improve Web performance. Our
work builds on this study and we use the application developed
by it to apply memory pressure on mobile devices. However, our
work differs from it in three different ways. First, our study is the
first to our knowledge that shows how frequently mobile devices,
based on users’ natural usage pattern, experience memory pres-
sure. Secondly, instead of Web browsing performance, we quantify
the impact of memory pressure on video streaming performance.
Third, we provide an in-depth system analysis of how kernel-level
mechanisms for managing memory pressure interact with video
streaming process to degrade performance.

Video performance and bottlenecks. There is a large body of
work, such as [24, 27, 32, 35–37], on adapting video quality given
network bottlenecks. Our work is complementary to these studies
as it highlights the device memory as a potential bottleneck for
video streaming. Client-side video bottlenecks have been investi-
gated to some extent by prior measurement studies albeit without
consideration for memory pressure [25, 26]. Ghasemi et al. [26]
investigated dropped frames and download stack latency in the
case of laptop and desktop machines. Dasari et al. [25] analyze the
impact of device parameters on different Internet applications but
do not consider high memory pressure regimes. Our work focuses

317



CoNEXT ’22, December 6–9, 2022, Roma, Italy T. Waheed et al.

on memory pressure on mobile devices and provides insights on
its impact on video performance.

9 CONCLUSION
Given the growing demands for high quality videos for mobile
video streaming, this work sheds light on the memory consump-
tion patterns of mobile devices, quantifies the impact of memory
pressure on video performance, and identifies root causes of per-
formance degradation. This work also highlights opportunities for
improving video performance through better adaption by the video
clients and better OS level memory management and scheduling
schemes. This work has implications for different stakeholders in
the smartphone ecosystem, including video streaming platforms,
OS developers, and Original Equipment Manufacturers.

ACKNOWLEDGEMENTS
We thank Abdul Manan for his help in developing experimental
setups used in the paper, and Muhammad Shahpar Nafees Khan for
help with performing early stage experiments. We are also grate-
ful to our shepherd, Aruna Balasubramanian, and the anonymous
reviewers for their comments and feedback.

REFERENCES
[1] Akamai. 2016. dash.js. https://github.com/Dash-Industry-Forum/dash.js/.
[2] Android: LowRAMConfiguration.

https://source.android.com/devices/tech/perf/low-ram.
[3] Bali in 8k ULTRA HD HDR - Paradise of Asia (60 FPS). https://youtu.be/

fajeL728XG8.
[4] Clarissa Ward presses Taliban fighter on treatment of women. https://youtu.be/

RIw7smlkIaU.
[5] ComponentCallbacks2,. https://tinyurl.com/97kc9pu5.
[6] Devices used to watch online video worldwide as of August 2019.

https://www.statista.com/statistics/784351/online-video-devices/.
[7] Distribution of worldwide YouTube viewing time as of 2nd quarter 2021, by

device. https://www.statista.com/statistics/1173543/youtube-viewing-time-share-
device/.

[8] Dubai Flow Motion in 4K – A Rob Whitworth Film. https://youtu.be/BLL-kW_
TpT4.

[9] Dumpsys. https://developer.android.com/studio/command-line/dumpsys.
[10] ExoPlayer. https://developer.android.com/guide/topics/media/exoplayer.
[11] ExoPlayer: Flexible media playback for Android (Google I/O ’17). https://youtu.

be/jAZn-J1I8Eg.
[12] Logcat command-line tool. https://developer.android.com/studio/command-line/

logcat.
[13] Memory allocation among processes. https://developer.android.com/topic/

performance/memory-management.
[14] Mobile Operating System Market Share Worldwide. https://gs.statcounter.com/

os-market-share/mobile/worldwide.
[15] NIGMA vs OG - TI CHAMPIONS GAME - DPC EU DREAMLEAGUE S14 DOTA

2. https://youtu.be/Ek-gfQo6ryE.
[16] Novak Djokovic vs Denis Shapovalov (4K 60FPS) MATCH HIGHLIGHTS Court

Level View 2021 ATP CUP. https://youtu.be/lnoba3DZQZw.
[17] Overview of memory management. https://developer.android.com/topic/

performance/memory-overview.
[18] Package visibility filtering on Android. https://developer.android.com/training/

package-visibility.
[19] Perfetto. https://perfetto.dev/.
[20] Recommended YouTube Upload Encode Settings. https://support.google.com/

youtube/answer/1722171?hl=en#zippy=%2Cbitrate.
[21] Supportedmedia formats. https://developer.android.com/guide/topics/media/media-

formats.
[22] Understanding Android Memory Usage (Google 1/O’18). https://tinyurl.com/

33yk98s7.
[23] Z. Akhtar, Y. Li, R. Govindan, E. Halepovic, S. Hao, Y. Liu, and S. Sen. Avic: A cache

for adaptive bitrate video. In Proceedings of the 15th International Conference on
Emerging Networking Experiments And Technologies, CoNEXT ’19, page 305–317,
New York, NY, USA, 2019. Association for Computing Machinery.

[24] Z. Akhtar, Y. S. Nam, R. Govindan, S. Rao, J. Chen, E. Katz-Bassett, B. Ribeiro,
J. Zhan, and H. Zhang. Oboe: Auto-tuning video abr algorithms to network

conditions. In Proceedings of the 2018 Conference of the ACM Special Interest
Group on Data Communication, SIGCOMM ’18, page 44–58, New York, NY, USA,
2018. Association for Computing Machinery.

[25] M. Dasari, S. Vargas, A. Bhattacharya, A. Balasubramanian, S. R. Das, and M. Fer-
dman. Impact of device performance on mobile internet qoe. In Proceedings of
the Internet Measurement Conference 2018, IMC ’18, pages 1–7, New York, NY,
USA, 2018. ACM.

[26] M. Ghasemi, P. Kanuparthy, A. Mansy, T. Benson, and J. Rexford. Performance
characterization of a commercial video streaming service. In Proceedings of the
2016 Internet Measurement Conference, IMC ’16, 2016.

[27] T.-Y. Huang, R. Johari, N. McKeown, M. Trunnell, and M. Watson. A buffer-based
approach to rate adaptation: Evidence from a large video streaming service. In
Proceedings of the 2014 ACM Conference on SIGCOMM, SIGCOMM ’14, 2014.

[28] A. V. Katsenou, J. Sole, and D. R. Bull. Content-gnostic bitrate ladder prediction
for adaptive video streaming. In 2019 Picture Coding Symposium (PCS), 2019.

[29] A. V. Katsenou, J. Sole, and D. R. Bull. Efficient bitrate ladder construction for
content-optimized adaptive video streaming. 2021.

[30] Y. Liang, J. Li, R. Ausavarungnirun, R. Pan, L. Shi, T.-W. Kuo, and C. J. Xue. Acclaim:
Adaptive memory reclaim to improve user experience in android systems. In 2020
USENIX Annual Technical Conference (USENIX ATC 20), pages 897–910. USENIX
Association, July 2020.

[31] Y. Liang, Q. Li, and C. J. Xue. Mismatched memory management of android
smartphones. In 11th USENIX Workshop on Hot Topics in Storage and File Systems
(HotStorage 19), Renton, WA, July 2019. USENIX Association.

[32] H. Mao, R. Netravali, and M. Alizadeh. Neural adaptive video streaming with
pensieve. In Proceedings of the Conference of the ACM Special Interest Group on
Data Communication, SIGCOMM ’17, 2017.

[33] U. Naseer, T. A. Benson, and R. Netravali. Webmedic: Disentangling the memory-
functionality tension for the next billion mobile web users. In Proceedings of
the 22nd International Workshop on Mobile Computing Systems and Applications,
HotMobile ’21, page 71–77, New York, NY, USA, 2021. Association for Computing
Machinery.

[34] I. A. Qazi, Z. A. Qazi, T. A. Benson, G. Murtaza, E. Latif, A. Manan, and A. Tariq.
Mobile web browsing under memory pressure. SIGCOMM Comput. Commun.
Rev., 50(4):35–48, Oct. 2020.

[35] K. Spiteri, R. Urgaonkar, and R. K. Sitaraman. Bola: Near-optimal bitrate adapta-
tion for online videos. In IEEE INFOCOM 2016 - The 35th Annual IEEE International
Conference on Computer Communications, 2016.

[36] Y. Sun, X. Yin, J. Jiang, V. Sekar, F. Lin, N. Wang, T. Liu, and B. Sinopoli. Cs2p:
Improving video bitrate selection and adaptation with data-driven throughput
prediction. In Proceedings of the 2016 ACM SIGCOMM Conference, SIGCOMM ’16,
pages 272–285, New York, NY, USA, 2016. ACM.

[37] X. Yin, A. Jindal, V. Sekar, and B. Sinopoli. A control-theoretic approach for
dynamic adaptive video streaming over http. In Proceedings of the 2015 ACM
Conference on Special Interest Group on Data Communication, SIGCOMM ’15,
2015.

A APPENDIX: CODE AND DATA
We have created a public repository14 to reproduce experimental re-
sults reported in this work and share the data we collected through
our user studies. To replicate all experimental results, we provide
our testbed setups, and explain how to use them. In addition, for
each experiment we also provide collected logs/traces and scripts
used to parse, analyse, and plot graphs presented in this work. For
the user study discussed in §3, we open-source the Android ap-
plication used to collect the results, share the data collected, and
provide code used to parse, analyze and plot graphs. For the user
study discussed in §4.3, we share the videos shown to users, the
exact questions they were asked, their responses, and the code used
to parse and plot the responses.

The repository comprises of seven folders. setup_video con-
tains the setup used for streaming video on mobile device browsers
while setup_mem-pressure contains the setup used to apply mem-
ory pressure to mobile devices. These setups are used for experi-
ments across multiple sections of the paper. The other five folders
correspond to the experiments/user studies discussed in §3, §4.2,

14Available at https://github.com/nsgLUMS/mobileVideo and https://doi.org/10.6084/
m9.figshare.21340758

318

https://source.android.com/devices/tech/perf/low-ram
https://youtu.be/fajeL728XG8
https://youtu.be/fajeL728XG8
https://youtu.be/RIw7smlkIaU
https://youtu.be/RIw7smlkIaU
https://tinyurl.com/97kc9pu5
https://youtu.be/BLL-kW_TpT4
https://youtu.be/BLL-kW_TpT4
https://developer.android.com/studio/command-line/dumpsys
 https://youtu.be/jAZn-J1I8Eg 
 https://youtu.be/jAZn-J1I8Eg 
https://developer.android.com/studio/command-line/logcat
https://developer.android.com/studio/command-line/logcat
https://developer.android.com/topic/performance/memory-management
https://developer.android.com/topic/performance/memory-management
https://gs.statcounter.com/os-market-share/mobile/worldwide 
https://gs.statcounter.com/os-market-share/mobile/worldwide 
https://youtu.be/Ek-gfQo6ryE
https://youtu.be/lnoba3DZQZw
https://developer.android.com/topic/performance/memory-overview
https://developer.android.com/topic/performance/memory-overview
https://developer.android.com/training/package-visibility
https://developer.android.com/training/package-visibility
https://perfetto.dev/
https://support.google.com/youtube/answer/1722171?hl=en#zippy=%2Cbitrate
https://support.google.com/youtube/answer/1722171?hl=en#zippy=%2Cbitrate
https://tinyurl.com/33yk98s7
https://tinyurl.com/33yk98s7
https://github.com/nsgLUMS/mobileVideo
https://doi.org/10.6084/m9.figshare.21340758
https://doi.org/10.6084/m9.figshare.21340758


Coal Not Diamonds: How Memory Pressure Falters Mobile Video QoE CoNEXT ’22, December 6–9, 2022, Roma, Italy

§4.3, §5 and §6 respectively. We provide a description for each
folder’s content below. If additional help is required, please reach
out to any of the authors.

A.1 Video Setup
The folder setup_video contains the testbed setup for streaming
DASH video on a mobile phone browser. We use a modified ver-
sion of Pensieve’s video setup [32] which enables us to log frame
drop statistics. We provide an overview of the setup and share in-
structions for installation and use. We also provide scripts we used
to convert videos into DASH-compatible format along with their
usage instructions.

A.2 Memory Pressure
The setup_mem-pressure folder contains two applications used
to apply/control memory pressure on mobile devices. The first is a
modified version of MP Simulator—an Android app developed in
a recent work [34] that synthetically applies memory pressure on
an Android device. 15 The second is a Node.js web application that
can be used to remotely interact with MP Simulator using both
an interactive Web UI and REST API calls. Usage instructions are
provided for both applications in their respective sub-directories.

A.3 Experiments and User Studies
Survey of memory usage in real-world devices (§3). The folder
sec3* contains the source code of SignalCapturer, the applica-
tion used to survey memory consumption patterns in Android
devices. It also contains a link to download all logs collected by
SignalCapturer, an IPython notebook to parse, clean and analyze
them, and plot the figures present in the section.
Memory footprint (§4.2). The folder sec4.2* contains an au-
tomation script that uses the video and memory pressure setups to
run video on Nexus 5 under multiple memory pressure states and
periodically logs browser processes’ memory footprint. The logs are
collected using the dumpsys meminfo [9] command. Instructions
to use the script are also provided. The folder also contains the logs
for our experiments and an IPython notebook to parse and plot
them.
Video streaming under memory pressure (§4.3). The folder
sec4.3* contains code and data pertaining to (i) the video stream-
ing experiments under memory pressure, and (ii) the user study to
quantify the impact of frame drops on user’s QoE. To reproduce the
video streaming experiments, we provide code and data similar to
how we provided it for sec4.2*. For the user study, we share the
videos shown to the users, explain how these videos were produced,
share users’ responses on the questions asked, and provide the code
used to plot the results.
Analysis of why performance degrades under memory pres-
sure (§5). The folder sec5* contains three sub-folders. The
initial_assessment folder contains instructions, scripts, and re-
sults for reproducing an initial assessment we conducted through
the Linux top command (this was used to produce Figure 14). The
trace_analysis folder contains code and data pertaining to the
system-level trace analysis conducted through Perfetto [19]. The

15This app only works on rooted Android devices.

480p 720p 1080p
Resolution

0
2
4
6
8

10
12
14
16
18
20

Fr
am

es
 d

ro
pp

ed
 (%

)

Normal Moderate Critical

480p 720p 1080p
Resolution

0
10
20
30
40
50
60
70
80
90

100

Cr
as

h 
ra

te
 (%

)

Figure 18: Video drops and crash rate with ExoPlayer on a 2 GB
Nexus 5 device.

folder includes instructions on how to record traces on Perfetto
using the same configurations we used. It further includes the traces
we recorded, scripts to parse information from them, and IPython
notebooks to analyze them and plot graphs. The bg_apps folder
includes code, data, and instructions for reproducing Figure 15.
Oppurtunities for improvement (§6). The folder sec6* contains
code and data pertaining to experimental results discussed in §6,
and instructions on how to reproduce them.

B PERFORMANCE ACROSS DIFFERENT
VIDEO PLAYERS

Our video experiments are mainly on one client video player—
Firefox. Here we share results from repeating the experiments on a
native Android application video player called ExoPlayer [10] and
on another mobile browser, Chrome.

B.1 Performance on a native application
To understand how video streaming fares under memory pressure
on native Android applications, e.g. YouTube, we conduct our ex-
periments on ExoPlayer [10].16 Figure 18 shows frame drops and
crash rates for ExoPlayer. We observe that under memory pressure,
contrary to Firefox, ExoPlayer drops a significantly smaller number
of video frames. However, like Firefox, ExoPlayer also suffers from
significant crashes under highmemory pressure.We conjecture that
the decrease in frame drops can be partly attributed to the lower
memory footprint of ExoPlayer, which has a smaller footprint then
Firefox.

B.2 Performance on Google Chrome
To measure the performance of video streaming under memory
pressure on a different browser, we selected Chrome. Figure 19
shows frame drops and crash rates on Chrome. We observe that un-
der memory pressure, contrary to Firefox, Chrome drops a smaller
number of video frames. However, like Firefox, Chrome also suffers
from significant crashes under high memory pressure. We conjec-
ture that the decrease in frame drops can be partly attributed to the
lower memory footprint of Chrome, which has a smaller footprint
than Firefox. We conjecture that the reason Chrome performs better
than Firefox is that it is more memory efficient (as shown by Qazi
et al. [34]).

16ExoPlayer is an open-source media player developed by Google that can be used in
a native Android application to play audio/video both locally and over the Internet.
ExoPlayer is widely adopted in the industry: as of 2017, over 140,000 Android apps
used ExoPlayer including YouTube, Netflix, Facebook, Spotify, etc. [11].

319



CoNEXT ’22, December 6–9, 2022, Roma, Italy T. Waheed et al.

480p 720p 1080p
Resolution

0
2
4
6
8

10
12
14
16
18
20

Fr
am

es
 d

ro
pp

ed
 (%

)

Normal Moderate Critical

480p 720p 1080p
Resolution

0
10
20
30
40
50
60
70
80
90

100

Cr
as

h 
ra

te
 (%

)
Figure 19: Video drops and crash rate with Google Chrome on a 2 GB
Nexus 5 device.

320


	Abstract
	1 Introduction
	2 Android Memory Management
	3 User study of mobile devices
	4 Impact of Memory Pressure
	4.1 Experimental Methodology
	4.2 Memory footprint
	4.3 Video streaming under memory pressure

	5 Why Video QoE degrades?
	6 Opportunities for Improvement
	7 Discussion
	8 Related Work
	9 Conclusion
	References
	A Appendix: Code and Data
	A.1 Video Setup
	A.2 Memory Pressure
	A.3 Experiments and User Studies

	B Performance across different video players
	B.1 Performance on a native application
	B.2 Performance on Google Chrome


