
Oboe: Auto-tuning Video ABR Algorithms to
Network Conditions

Zahaib Akhtar*
University of Southern California

Yun Seong Nam*
Purdue University

Ramesh Govindan
University of Southern California

Sanjay Rao
Purdue University

Jessica Chen
University of Windsor

Ethan Katz-Bassett
Columbia University

Bruno Ribeiro
Purdue University

Jibin Zhan
Conviva

Hui Zhang
Conviva

ABSTRACT
Most content providers are interested in providing good video
delivery QoE for all users, not just on average. State-of-the-art
ABR algorithms like BOLA and MPC rely on parameters that
are sensitive to network conditions, so may perform poorly
for some users and/or videos. In this paper, we propose a
technique called Oboe to auto-tune these parameters to dif-
ferent network conditions. Oboe pre-computes, for a given
ABR algorithm, the best possible parameters for different net-
work conditions, then dynamically adapts the parameters at
run-time for the current network conditions. Using testbed ex-
periments, we show that Oboe significantly improves BOLA,
MPC, and a commercially deployed ABR. Oboe also betters
a recently proposed reinforcement learning based ABR, Pen-
sieve, by 24% on average on a composite QoE metric, in part
because it is able to better specialize ABR behavior across
different network states.

CCS CONCEPTS
• Information systems → Information systems applica-
tions; Multimedia streaming;

KEYWORDS
Video delivery, Adaptive bitrate algorithms

ACM Reference Format:
Zahaib Akhtar*, Yun Seong Nam*, Ramesh Govindan, Sanjay
Rao, Jessica Chen, Ethan Katz-Bassett, Bruno Ribeiro, Jibin Zhan,
and Hui Zhang. 2018. Oboe: Auto-tuning Video ABR Algorithms to

* Both authors contributed equally to this paper and can be contacted at following:
zakhtar@usc.edu, nam21@purdue.edu

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SIGCOMM ’18, August 20–25, 2018, Budapest, Hungary
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5567-4/18/08. . . $15.00
https://doi.org/10.1145/3230543.3230558

Network Conditions. In SIGCOMM ’18: ACM SIGCOMM 2018
Conference, August 20–25, 2018, Budapest, Hungary. 15 pages.
https://doi.org/10.1145/3230543.3230558

1 INTRODUCTION
Internet video forms a major fraction of Internet traffic to-
day [13], and delivering high quality of experience (QoE) is
critical since it correlates with user engagement and revenue
[6, 23, 31]. To deliver high quality video across diverse net-
work conditions, most Internet video delivery uses adaptive
bitrate (ABR) algorithms [32, 48, 59], combined with HTTP
chunk-based streaming protocols (e.g., Apple’s HTTP Live
Streaming, Adobe’s HTTP Dynamic Streaming). ABR algo-
rithms (a) chop a video into chunks, each of which is encoded
at a range of bitrates (or qualities); and (b) choose which
bitrate level to fetch a chunk at based on conditions such as
the amount of video the client has buffered and the recent
throughput achieved by the client. Within this general frame-
work, ABR algorithms differ in how bitrate level selection
decisions are made, and these decisions impact metrics such
as the average bitrate or the rebuffering ratio. We call these
QoE metrics, because they have been shown to correlate well
with QoE [23], but other perceptual video quality metrics [2]
may also influence QoE.

ABR algorithm design remains an active research area be-
cause content providers continue to be interested in improving
the performance of video delivery. Current ABR algorithms
perform well on average, but some users can experience poor
delivery performance as measured by the QoE metrics. These
users suffer because ABR algorithms have limited dynamic
range: they do not perform uniformly well across the range of
network conditions seen in practice because their parameters
are sensitive to throughput variability (§2).

Contributions. In this paper, we present the design of
Oboe1 (§3), a system that takes the first step towards
overcoming these hurdles. Oboe improves the dynamic range
of ABR algorithms by automatically tuning ABR behavior to

1In orchestras all instruments tune to the Oboe.

44

https://doi.org/10.1145/3230543.3230558
https://doi.org/10.1145/3230543.3230558
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3230543.3230558&domain=pdf&date_stamp=2018-08-07

SIGCOMM ’18, August 20–25, 2018, Budapest, Hungary Z. Akhtar et al.

the current network state of a client connection, specifically
to throughput and throughput variability.

Oboe’s design is based on the observation made by prior
work [17, 35, 38, 52, 60] that TCP connections are well-
modeled as traversing a piecewise-stationary sequence of
network states (§3.1): the connection consists of multiple
non-overlapping segments where each segment is in a distinct
stationary network state. For each possible network state,
Oboe pre-computes, offline, the best parameter configuration
for a given ABR algorithm (§3.2). It does this by subjecting
the algorithm, for each state, to different parameter values,
and picking the one that results in the best performance. Then,
during video playback, Oboe continuously uses a change-
point detection algorithm to detect changes in network state
and selects the parameter identified by the offline analysis as
best for the current state. Thus, if a video session encounters
varying network state during its lifetime, Oboe automatically
specializes the ABR parameter to each state (§3.3).

We have implemented Oboe and demonstrated several as-
pects of its performance through testbed experiments and
trace driven simulations. First, Oboe significantly improves
performance of QoE metrics for three qualitatively different
ABR algorithms, one that makes bitrate switching decisions
on buffer occupancy alone (BOLA) [48], another that uses
both throughput and buffer occupancy (HYB, a widely de-
ployed algorithm), and a third that also optimizes decisions
across a finite lookahead horizon (RobustMPC) [59]. In each
of these cases, Oboe results in significant improvement. For
instance, Oboe reduces sessions with rebuffering from 33.3%
to 5.3% relative to RobustMPC while also significantly im-
proving a composite QoE metric.

Oboe, when applied to RobustMPC, also performs signifi-
cantly better than a newly proposed approach called Pensieve
that learns, from real traces (using reinforcement learning),
how to adapt to a variety of network conditions. For nearly
80% of the sessions in our dataset, Oboe improves the same
composite metric, with benefits exceeding 20% for 25% of the
traces. Compared to Oboe, which can specialize parameters
to individual network states, Pensieve is unable to special-
ize across the entire range of network throughputs. We have
tried training specialized Pensieve models for different ranges
of network throughputs and dynamically switching models
based on estimated session throughput. This helps, but a sig-
nificant gap between the two approaches still remains (§4.4).

While a variety of viable pathways exist to deploying Oboe,
we focus on an architecture where Oboe and the entire ABR
logic are deployed on the cloud which enables rapid evolution
and fine-grain customizability. We show the viability of this
architecture with results from a pilot deployment.

2 BACKGROUND AND MOTIVATION
The Internet video delivery ecosystem consists of hundreds
of content publishers and hundreds of client side applications
that stream video content to diverse user devices. Publishers,
content delivery networks, and users all seek to improve user
quality of experience (QoE). There are many factors that
affect QoE including start up latency, the average bitrate for a
video session, as well as the rebuffering ratio (the percentage
of time playback is stalled because of drained buffer) [23].
Video players improve QoE using adaptive bitrate (ABR)
algorithms which select bitrates for each chunk while (1)
ensuring the bitrate seen by the user is as high as possible
and (2) avoiding rebuffering events at the client. Some ABR
algorithms may also try to minimize the number of bitrate
switches to make the playback smooth.

Content publishers serve different types of content includ-
ing VoD (Video on Demand) or Live broadcasts. They may
also serve streams of different qualities ranging from HD
(high definition) to SD (standard definition). These differ-
ences impact how they serve videos. For example, publishers
who serve VoD content can use player buffers as large as 4
minutes [32], whereas publishers serving live content may
have a time-to-live2 requirement between 15-45 seconds. Sim-
ilarly, based on the quality of streams they serve, publishers
may use different bitrate levels or chunk sizes. Further, pub-
lishers may have different QoE objectives. For example, some
may strictly prefer to minimize rebuffering and others may
relax their tolerance for rebuffering to prioritize higher bi-
trates. We use the term publisher specifications to denote
their choice of bitrate levels, chunk sizes, content type, and
rebuffering tolerance.

2.1 Background on ABR Algorithms
ABR algorithms fall in two broad categories: (i) those that
use both prediction of network throughput and buffer occu-
pancy [34, 51, 59]; and (ii) those that are primarily based on
buffer occupancy [32, 48]. Within the above two categories,
ABR algorithms can be designed using approaches ranging
from heuristics to stochastic optimization. In §4, we discuss
a recently proposed ABR algorithm based on a qualitatively
different approach, reinforcement learning [39].

MPC: Throughput prediction and buffer occupancy with
look-ahead. Selects bitrate by solving an optimization prob-
lem. MPC [59] predicts throughput of future chunk down-
loads based on throughput samples of recently downloaded
chunks, then uses this predicted throughput to select bitrates
to optimize a given QoE function (§4) over a look-ahead
window of 5 future chunks. The aggressive version of the
algorithm (FastMPC) directly uses a throughput estimate ob-
tained using a harmonic mean predictor. To compensate for
2For live content, the time between the event and its broadcast to users. This bounds
the maximum buffer that a player streaming a live event can build.

45

Oboe SIGCOMM ’18, August 20–25, 2018, Budapest, Hungary

Figure 1—Performance of ABR algorithms using different configurations for two sessions with different throughput behaviors

Figure 2—Illustrating how policy for setting discount factors in MPC impacts performance for different traces

throughput prediction errors, a more conservative version, Ro-
bustMPC, reduces predicted throughput by a discount factor
1+𝑑, where 𝑑 is the maximum error in throughput predictions
experienced in the last five chunk downloads.

BOLA: Buffer occupancy, selects bitrate by solving an
optimization problem. BOLA is a buffer-based algorithm
used in Dash.js [7], so it does not employ throughput pre-
diction in making bitrate decisions [48]. It also models bitrate
selection as an optimization problem which it solves for a
given value of the buffer. It uses a parameter 𝛾 which is a ratio
of (i) a minimum buffer threshold, below which it downloads
the lowest bitrate and (ii) a target buffer threshold which it
tries to maintain. Conceptually 𝛾 controls how strongly the
ABR should avoid rebuffering [48]. Higher values of 𝛾 make
the algorithm conservative.

HYB: Throughput prediction without lookahead. Selects
bitrate using a simple heuristic. An algorithm widely used in
production (§5), HYB considers both the predicted throughput
and current buffer occupancy (HYB is short for hybrid). For
each chunk, HYB picks the highest bitrate that can avoid
rebuffering. Specifically, if 𝑆𝑗 (𝑖) denotes the size of chunk 𝑗
encoded at bitrate 𝑖, 𝐵 is the predicted throughput based on
past samples, and 𝐿 the length of the buffer. HYB picks the
largest bitrate 𝑖 such that 𝑆𝑗 (𝑖)

𝐵 < 𝐿 × 𝛽. Here, 𝛽 can have
values between 0 and 1 (higher values represent aggressive
ABR behavior). 𝛽 can be tuned to offset prediction errors in
throughput and to compensate for the greedy nature of the
approach which may make it susceptible to future buffering
events owing to unexpected throughput dips.

2.2 Ensuring High QoE for All Users
Despite widespread deployment, ABR algorithms continue
to be an active area of research [32, 34, 39, 48, 51, 59]. This

is because, while deployed ABR algorithms work well on
average, they do not work uniformly well across all network
conditions. A key reason for this is that ABR algorithms have
parameters (which we henceforth refer to as configurations)
that must be set in a manner sensitive to network conditions.
ABR algorithms need to run on many different networks, rang-
ing from cellular and WiFi networks at one end, to high-speed
broadband connections at the other. Given this diversity, net-
work conditions can vary significantly. Packet loss conditions
can vary by an order of magnitude or more across the globe
[25]. Network throughputs can also vary widely: for 90% of
traces in a large dataset, the trace’s maximum throughput is
more than twice its average throughput. Yet, unfortunately,
most ABR algorithms today either employ fixed configura-
tions or simple heuristics to adapt these configurations (§2.1).

Figures 1(a) and 1(b) show how the choice of ABR config-
uration depends on network conditions. Figure 1(a) shows the
bitrate and rebuffering ratio for two client sessions with the
HYB algorithm for three different values of its 𝛽 parameter,
Cons (Conservative), Mod (Moderate), and Aggr (Aggres-
sive). The throughput behavior of the two sessions is shown
in Figure 1(c). If a publisher prefers to eliminate rebuffering,
Mod is suitable for session A, but Cons is better for session B.
Figure 1(b) shows that BOLA behaves similarly, with Mod
being the preferred setting for session A and Cons for session
B, to avoid rebuffering.

Figures 2(a) and 2(b) show the difficulty in setting the
discount factor with MPC, by comparing the performance
of FastMPC (no discount factor), and RobustMPC (discount
factor set by local heuristic) for two throughput traces with
different characteristics. In each figure, the top subgraphs
show the available throughput (green curve) and the through-
put estimate of FastMPC (red) and RobustMPC (blue). For

46

SIGCOMM ’18, August 20–25, 2018, Budapest, Hungary Z. Akhtar et al.

the left graph, although the throughput is generally good, the
sudden variations force RobustMPC to make overly conserva-
tive bitrate decisions, as well as incur more bitrate switches.
(bottom subgraph). In contrast, in Figure 2(b), the quicker and
more frequent throughput changes (top subgraph) result in
FastMPC experiencing rebuffering (middle subgraph), while
RobustMPC does not. This is just one example illustrating
the difficulty in picking parameters – in our evaluations (§4),
we found that RobustMPC was itself too aggressive when
selecting discount factors for some traces.

While this section uses synthetic traces for illustrative pur-
poses, our evaluations with real traces (§4) more extensively
demonstrate the limitations of current approaches with re-
spect to selecting parameters and the benefits of automatically
tuning ABR parameters to network conditions.

3 OBOE DESIGN
Oboe aims to ensure good QoE for all users by enabling ABR
algorithms to perform better across a wide range of network
conditions. The configurations of many ABR algorithms are
sensitive to network state, specifically to the value and vari-
ability of the available throughput between the client and the
video server. For example, 𝛽 in HYB should be smaller when
available throughput is highly variable, while 𝛾 in BOLA
should be higher. This explains why the algorithms perform
differently for different values of parameters on a given client
trace (§2.2). However, a line of prior work [17, 35, 38, 52, 60]
has observed that network connections are piecewise station-
ary: that is, connections can be in one of several distinct states
(§3.1), where each state is distinguished by stationarity in the
statistical sense (informally, a process is stationary if its sta-
tistical properties including mean and variance do not change
over time - see [43] for a more formal definition).

Oboe leverages the piecewise stationarity of network con-
nections to address the key challenge of sensitivity of config-
urations to network conditions. It does so using a two stage
design: (a) an offline stage where it pre-computes the best con-
figuration choice for each (stationary) network state (§3.2),
and (b) and an online stage, where during a session, it de-
tects changes in network state and applies the pre-computed
best configuration for the current (stationary) state (§3.3).
Oboe can also accommodate publisher specifications such
as session type (live vs. video-on-demand, time-to-live re-
quirements), bitrate levels or any explicit QoE tradeoffs (e.g.,
preference between rebuffering and average bitrate) (§3.2), by
using these to influence the selection of the best configuration
for each (stationary) network state in the offline stage.

3.1 Representing Network State
Most ABR algorithms today adapt bitrates based on the
throughput (more precisely, goodput) achieved by recently

Figure 3—The logical diagram of the offline pipeline used by Oboe

downloaded chunks. This perceived throughput already ac-
counts for network delays and loss-rates, as well as the dy-
namics of the underlying transport protocol.

The network throughput along a path is not necessarily a
stationary process [17, 35, 38, 52, 60]: flows at the bottleneck
along a path may change over time resulting in changes to
available throughput, or the bottleneck itself may shift [35].
An analysis of the throughput traces used in our evaluations
(§4) confirms the lack of stationarity when applied to the en-
tire trace. We analyze throughput traces using the Augmented
Dickey-Fuller (ADF [26]) test, a hypothesis test to check for
stationarity in a time series. Our evaluations on a dataset of
15,000 video streaming throughput traces show that 59.5%
were non-stationary (see §4.2 for details of the dataset), imply-
ing the presence of distinct mean and/or variance in different
segments of the traces.

However, prior work [17, 35, 38, 52, 60] shows that TCP
connection throughput can be modeled as a piecewise sta-
tionary process; the connection consists of multiple non-
overlapping segments where each segment is stationary and
often lasts for tens of seconds or minutes (e.g., Figure 8).
Moreover, Zhang et al. [60] show that the throughput in each
segment may be modeled as an i.i.d. process.

Motivated by these observations, Oboe defines network
state 𝑠 by a tuple < 𝜇𝑠, 𝜎𝑠 >, where 𝜇𝑠 is the mean and 𝜎𝑠

the standard deviation of the client-perceived throughput in a
(stationary) segment of the underlying TCP connection.

3.2 Offline Mapping of Network States
To map network states to their optimal ABR configurations,
Oboe uses a pipeline (Figure 3) consisting of three compo-
nents – the ConfigEvaluator, the VirtualPlayer and the Con-
figSelector. The ConfigEvaluator takes a stationary through-
put trace as input, which represents a particular network state,
and drives the exploration of different ABR configurations
over this trace. It does so by using the VirtualPlayer which
models the dynamics of an actual video player. The Virtu-
alPlayer interfaces with the ABR algorithm implementation
and outputs the performance of different configurations of the
ABR. Finally, the ConfigSelector compares the performance
of different configurations and builds a ConfigMap, which
maps a given network state to the best configuration.

47

Oboe SIGCOMM ’18, August 20–25, 2018, Budapest, Hungary

Generating throughput traces for ConfigEvaluator. To
explore configuration space of an ABR algorithm on each net-
work state 𝑠, ConfigEvaluator needs a stationary throughput
trace to represent 𝑠. To generate such a trace, we explored two
different approaches. In one approach, we extracted stationary
segments from real traces using offline change point detec-
tion ([10], described in §3.3). Change points capture points
where the distribution changes. However, because we are not
guaranteed coverage (i.e., not all states might be observable
in real traces), we also explored a second approach which
involved generating a synthetic trace for each 𝑠 with 𝑠’s mean
and standard deviation, assuming a Gaussian distribution for
the throughput samples. This was motivated by Dinda et al.
[38] who showed that the throughput of TCP flows of the
same size in a given stationary segment may be modeled as
a Gaussian distribution (also see §3.1). More recent work
also shows that TCP throughput is well modeled as a Markov
process, each of whose states may be modeled as a Gaussian
distribution [49]. We found that Oboe with synthetic traces
performed comparably to stationary segments from real traces.
So, ConfigEvaluator uses synthetic traces.

Specifically, ConfigEvaluator quantizes both mean and
standard deviation of throughput using a quantum (in our
experiments, of 50 Kbps), resulting in states (in our experi-
ments, 10,000), spread over a two dimensional space (in our
experiments, 0.05-10 Mbps) of throughput and standard devi-
ation. For each state, we generate a synthetic stationary trace.
We found that the benefits of finer quantization are marginal.

Estimating ABR performance with VirtualPlayer and
publisher specifications. Oboe uses VirtualPlayer, a trace-
based simulator that mimics the behavior of an actual video
player without downloading or rendering actual videos.
It takes as input a throughput trace and outputs the QoE
performance metrics of a video session for a specified
ABR algorithm. We have validated VirtualPlayer in §4.7.
In designing VirtualPlayer, we have decoupled ABR logic
(Figure 3), so the same implementation of the ABR logic
can be used in Oboe’s offline and online stage. Further, this
design provides an interface to the ABR designer through
which they can easily integrate their ABR algorithm with
Oboe without having to know about Oboe’s internals.

The VirtualPlayer also takes into account publisher spec-
ifications for bitrate levels, player buffer sizes (determined
by time-to-live requirements) and chunk size. These spec-
ifications are used by VirtualPlayer when it executes ABR
algorithms on the input traces, ensuring that the resulting Con-
figMap meets the publisher specifications. Finally, Oboe also
allows the publisher to optionally express an explicit QoE
tradeoff such as maintaining the rebuffering under a desired
threshold 𝑥%. Oboe derives a ConfigMap that meets the re-
buffering threshold in a best effort manner. We evaluate the
efficacy of this flexibility in §4.7.

Building the ConfigMap using ConfigSelector. To build
the ConfigMap, the ConfigEvaluator drives the exploration of
different configurations for an ABR algorithm. For a given
network state 𝑠, ConfigEvaluator sweeps through possible
configurations of the ABR algorithm using the VirtualPlayer.
For example, the 𝛽 parameter in HYB can take values from 0
to 1, so ConfigEvaluator plays the trace for state 𝑠 for multiple
values of 𝛽 (quantized for efficiency, see below) in this range.

For each parameter value 𝑐𝑖, VirtualPlayer outputs a per-
formance vector 𝑉𝑖 =< 𝑣1, 𝑣2, . . . 𝑣𝑚 > where each 𝑣𝑘 cor-
responds to the values achieved by 𝑐𝑖 for a QoE metric (e.g.,
bitrate, rebuffering ratio, and more generally join time and
frequency of switching bitrates [23]). This set of performance
vectors with the corresponding parameter values are then sent
to ConfigSelector for picking the best configuration.

ConfigSelector takes the set of performance vectors and
determines the best configuration from them using vector
dominance. A configuration 𝑐𝑖 is said to dominate 𝑐𝑗 if 𝑉𝑖

element-wise dominates 𝑉𝑗 (i.e., each element of 𝑉𝑖 is bet-
ter than or equal to the corresponding element of 𝑉𝑗). This
step also takes into account any rebuffering tolerance, and
ConfigSelector applies this tolerance to select the maximal
performance vector. Deferring the selection of the maximal
vector for a given rebuffering tolerance to this stage (instead
of filtering vectors in the previous step) is beneficial: it mini-
mizes recomputation by allowing Oboe to quickly compute a
new maximal vector if the publisher changes the rebuffering
tolerance. At the end of this stage, Oboe obtains the Con-
figMap, a complete mapping of each network state to its
corresponding optimal ABR configuration.

Two optimizations can be used to quicken the rate of ex-
ploration of the ConfigEvaluator. The first is to quantize the
parameter sweep, so that configurations are evaluated at a
coarser granularity. This trades off some performance for
lower computational complexity. The second optimization is
based on the observation that there is generally a monotonic
relationship between parameter values and the performance.
For instance, for HYB (§2.1), the rebuffering ratio and av-
erage bitrate are monotonically non-decreasing with the pa-
rameter 𝛽. Based on this observation, we can instead use an
𝑂(log 𝑛) binary search of the configuration space instead of
doing a full 𝑂(𝑛) sweep of all configurations.

3.3 Online ABR Tuning
Oboe uses the ConfigMap generated offline, and live through-
put measurements from the video player to dynamically
change ABR configurations during a video playback. It does
this by using an online change point detection algorithm
[14]. This algorithm identifies, in an online fashion, if
the distribution of the throughput samples has changed
significantly, signaling a state transition. When a change
point is detected, the algorithm also provides the new state

48

SIGCOMM ’18, August 20–25, 2018, Budapest, Hungary Z. Akhtar et al.

Figure 4—Logical diagram of Oboe’s online pipeline

𝑠’s mean and standard deviation. Oboe’s ChangeDetector
(Figure 4) implements the change point detection algorithm,
and the ReconfEngine is responsible for updating the
ABR configuration based on a new network state and the
ConfigMap.

Change point detection algorithms. Such algorithms ana-
lyze a time series and check if there are regions in the time
series where the underlying distribution of the data changes
to a different set of parameters. Offline change-point methods
require the full time series to be available, whereas online
methods work with a continuous stream of samples as they
become available. We focus on online methods, since Oboe
identifies change points for an in-progress session and dynam-
ically changes configurations.

While several techniques exist for change point detection
[22, 33, 36, 44, 54, 58], we focus on probabilistic methods
[14, 18, 24, 57]. Further, we use a Bayesian online proba-
bilistic change-point detector [14] for two reasons. First, in
[14], a sequence of observations can be partitioned into non-
overlapping states such that the observations are i.i.d. condi-
tioned on a given network state 𝑠. This view aligns well with
the way we have defined a network state (§3.1). Further, the al-
gorithm is fast and requires no prior knowledge about the data
stream, matching our scenario. We use the implementation
provided in [10] and integrate it with the ChangeDetector.

Detecting changes in network state. During a video ses-
sion, ChangeDetector is continually fed with a series of obser-
vations of the network throughput, which it uses to detect state
changes. ChangeDetector calculates throughput and standard
deviation by only considering those samples which belong
to the current state. To generate inputs to ChangeDetector,
one approach is to use each downloaded chunk to obtain a
single throughput sample. However, this may be too coarse-
grained, and prevent detection of changes in network state
that occur during the chunk download. Instead, we use fine
grained samples recorded at periodic intervals (tens of mil-
liseconds) during the download of each chunk. Players such
as Dash.js already periodically log intermediate throughput
samples during a chunk download, so obtaining these sam-
ples does not incur any additional overhead. We only need
to modify players to report these samples to Oboe. The set
of samples are provided to ChangeDetector after the chunk
download, and any change in state is only detected at the end

of the chunk download. This is acceptable since any action
that can be taken by the ABR algorithm (such as a bit rate
switch) only impacts subsequent chunks. In the rarer case that
an ABR algorithm abandons the download of a chunk that
takes too long, the report is sent when the chunk download is
abandoned. §4.8 evaluates the overheads of ChangeDetector.

An alternative approach to changing configurations is to
use an exponentially weighted moving average (EWMA) of
the mean and standard deviation of throughput samples and
to lookup the corresponding configuration. We experimented
with such an approach and found its performance unsatisfac-
tory. The approach can result in continual and unnecessary
reconfigurations, since throughput may vary across samples
even when the network is (statistically) stationary. Damping
these changes can result in slow reaction times when a recon-
figuration is actually beneficial. In contrast, Oboe (i) models
the underlying TCP connection as a sequence of states; (ii)
does not make changes to the configuration within a given
network state; and (iii) only reconfigures when a state change
is observed.

Reconfiguring ABR Algorithm. When a change in the net-
work state is detected, the ChangeDetector signals the change
and the new network state 𝑠 to the ReconfEngine. The Recon-
fEngine then searches a neighborhood of radius 𝑟 in the Con-
figMap to select the configuration to use for state 𝑠. Specifi-
cally, if state 𝑠 is a point in a 2-dimensional space of average
throughput and standard deviation of throughput, then it picks
the most conservative ABR configuration within a search ra-
dius 𝑟 around 𝑠. It does this for two reasons. First, because
Oboe quantizes the network states, it might not have precom-
puted the best configuration for 𝑠. Second, the estimated new
network state 𝑠 may have some error, for example, due to
inefficiencies in the client download stack [27]. Given these
sources of uncertainty, Oboe chooses to be safe in its selec-
tion of the best configuration for 𝑠. Finally, ReconfEngine
configures the ABR algorithm, and the reconfigured ABR
algorithm is ready to compute the bitrate decision to be used
for the next chunk at this point.

4 EVALUATION
In this section, we demonstrate Oboe’s ability to auto-tune
three existing algorithms: RobustMPC, BOLA and HYB. We
also compare an Oboe-tuned RobustMPC to Pensieve [39].

4.1 Metrics
The performance of a video session depends on multiple fac-
tors. Average bitrate and rebuffering ratio were found to have
the most impact on user quality of experience [23], though
other factors such as changes in bitrates during a session can
play a role [23]. There is no consensus on how to best cap-
ture a user’s QoE. Consequently, ABR algorithms today are
designed to optimize different metrics. For instance, HYB

49

Oboe SIGCOMM ’18, August 20–25, 2018, Budapest, Hungary

Figure 5—A scatter plot of average bitrate and rebuffering ratio between the Virtu-
alPlayer and real Dash.js player

and BOLA primarily maximize average bitrate subject to low
rebuffering. In contrast, other algorithms [39, 59] have been
designed to optimize a QoE metric which is a linear combina-
tion of bitrate, rebuffering and bitrate changes (smoothness).

With Oboe, our primary evaluation goal is to demonstrate
the extent to which it can improve the underlying metrics that
an ABR algorithm is designed for. Thus, our evaluations with
BOLA and HYB focus on average bitrate and rebuffering,
while those with MPC+Oboe focus on the linear combination
of QoE (which we refer to as QoE-lin, [59]), defined as
follows. For a video with 𝑁 chunks, let 𝑅𝑖 be the bitrate
chosen for chunk 𝑖. Then, the magnitude of bitrate changes
𝑀 may be defined as 𝑀 =

∑︀𝑁−1
𝑖 |𝑅𝑖+1 − 𝑅𝑖|. If the ses-

sion experiences a total of 𝑇 seconds of rebuffering, then,
QoE-lin(𝑝, 𝑐) = 1

𝑁 *
∑︀

𝑖 (𝑅𝑖 − 𝑝𝑇 − 𝑐 * 𝑀), where 𝑝 and 𝑐
represent scaling penalties applied to rebuffering and changes
in the session. This function may be viewed as the session
QoE averaged over the number of chunks. For our videos
that had a maximum bitrate of 4.3 Mbps, we use 𝑝 = 4.3 and
𝑐 = 1 as our default parameters (following previous work that
set default rebuffering penalty equal to the maximum bitrate
value [39, 59]).

Even when an algorithm optimizes a metric such as
QoE-lin, it is important to understand the distributions of
underlying factors. The underlying factors represent concrete
application performance that publishers understand how to
reason about. Moreover, a unified metric like QoE-lin can
obscure important differences. For example, two sessions
may have the same QoE-lin but different performance in
underlying metrics, leading to varied user experience. So, we
also present graphs of these metrics.

4.2 Methodology
Implementation. For RobustMPC, we used the imple-

mentation available at [11]. Our implementation of BOLA
[@bola] is from the Dash.js player. The implementation
of HYB is a variant of the algorithm used in a large-scale
deployment. These ABR algorithms and Oboe’s online stage
(change point detection and ABR reconfiguration) run on
the server in our experiments. Our client runs the Dash.js
video player (version 1.2), a reference player implemented
in JavaScript by the MPEG-DASH forum [7]. We modified

Dash.js to send client player state information (e.g. buffer
length, video play state and throughput measurements) to
Oboe (§5). This player runs on the Google Chrome browser
(version 61) in our experiments. In §5, we show that Oboe
can also be run as a cloud service.

Testbed setup. Our evaluations measure ABR performance
by delivering a video stream (the “EnvivioDash3” video from
the MPEG-DASH reference videos [12]) from a video host-
ing server to a client, while varying network conditions us-
ing throughput traces from real user sessions. We use bi-
trates {300, 750, 1200, 1850, 2850, 4300}𝑘𝑏𝑝𝑠 with a 4 sec-
ond chunk duration and total length of 192 seconds. We focus
on this video as it has been used in prior work [39], and we
do not consider videos of longer duration because we only
have throughput traces available for a video publisher that
serves short music videos (as we discuss below). The video
is hosted on an Apache server. Both the server and client
software run on the same 8-core, 4 Ghz, Intel i7 commodity
desktop with 12 GB RAM running Ubuntu 16.04. Between
server and client, we emulate different network conditions
using the Chrome DevTools API [9]. This allows us to control
the upload/download throughput as well as latency using the
Chrome-Remote-Interface based on throughput traces [5]. We
use 571 throughput traces3 from our dataset (discussed below)
for this emulation. All our testbed experiments use a client
buffer of 2 minutes.

Datasets. We use throughput traces from real user sessions
collected over a three month period. Each trace contains the in-
dividual chunk sizes and their download times for on-demand
video sessions from a publisher that serves short (4-6 minute)
music videos. We derive throughput by dividing the chunk
sizes by their download durations. The traces contain sessions
that used desktops with wired connections and also sessions
on mobile devices using WiFi or cellular connections. Like
previous work [39, 59], we primarily focus on traces that
have less than 6 Mbps average throughput, since this is the
regime where bitrate switching decisions are likely to have
QoE impact. We filtered out traces which were too short for
playing our entire 192 second video, after which we obtained
5K traces from wired desktops and 4K sessions from WiFi or
3G/4G mobile devices. Our testbed experiments use a subset
of 571 traces with roughly the same number of traces sampled
from each of desktop and mobile clients.

VirtualPlayer setup. Recall that Oboe uses the Virtu-
alPlayer to obtain a ConfigMap for any ABR algorithm.
Since the majority of our results use an actual testbed with
the Dash.js player, the benefits of Oboe in our evaluation
results already arise despite any inaccuracies in building the
ConfigMap on account of using the VirtualPlayer. That said,
we have also verified that the VirtualPlayer does a good job

3Available at https://github.com/USC-NSL/Oboe

50

SIGCOMM ’18, August 20–25, 2018, Budapest, Hungary Z. Akhtar et al.

Figure 6—The percentage improvement in QoE-lin of MPC+Oboe over RobustMPC for the Testbed experiment. The distribution of average bitrate, rebuffering ratio and bitrate
change magnitude for the schemes is also shown.

Figure 7—QoE-lin of MPC+Oboe compared to RobustMPC

of tracking the performance of the actual ABR algorithms.
For instance, Figure 5(a) and 5(b) demonstrates this for the
HYB algorithm. The figures shows the correlation for the
average bitrate and rebuffering ratio for 100 throughput
traces randomly sampled from our dataset using HYB
on the VirtualPlayer compared to using an actual Dash.js
player. For both metrics, the graph closely tracks the
𝑦 = 𝑥 line indicating close correlation. Given these close
correlations, we use the VirtualPlayer in §4.7 to explore
Oboe’s performance over a larger range of diverse settings
and our entire set of traces.

4.3 Oboe with RobustMPC
We now demonstrate that Oboe can be used to auto-tune Ro-
bustMPC, the best performing variant of the MPC algorithms.
The resulting MPC+Oboe uses the best value of the discount
parameter 𝑑 corresponding to the current network state, re-
placing RobustMPC’s online adaptation based on throughput
estimates obtained over the past 5 chunks (§2).

Figure 6(a) shows the CDF of the percentage improvement
in QoE-lin of MPC+Oboe over RobustMPC.4 MPC+Oboe
improves QoE-lin for 71% of sessions, with an overall av-
erage QoE-lin improvement of 17.62% across all sessions.
In particular, for 19% of the sessions, QoE-lin improves
by more than 20%. For the sessions MPC+Oboe is unable to
improve RobustMPC, its performance degradation is mostly
under 8%. Figures 6(b), 6(c) and 6(d) show the constituent
QoE metrics. While MPC+Oboe achieves distributionally sim-
ilar bitrates as RobustMPC as shown in 6(b), it significantly
reduces rebuffering across sessions: the number of sessions
with rebuffering reduces from 33.2% to 5.3%. Further, it
also achieves better playback smoothness by improving the

4The increase in QoE-lin over RobustMPC relative to the absolute QoE-lin value
of RobustMPC expressed as a percentage.

Figure 8—An example session showing how MPC+Oboe is able to outperform Ro-
bustMPC by reconfiguring the discount parameter when a network state change is de-
tected.

median per chunk change magnitude by 38% (Figure 6(d)). Fi-
nally, Figure 7 shows the CDF of QoE-lin for MPC+Oboe
and RobustMPC, and indicates MPC+Oboe distributionally
performs better.

Figure 8 illustrates, using a single session, why MPC+Oboe
performs better than RobustMPC. The top graph shows
throughput as a function of time, which includes an initial
stable state followed by a drop in throughput. The middle
graph shows how the discount factor 𝑑 of both RobustMPC,
and MPC+Oboe vary (the predicted throughput for each
system is reduced by a factor of 1

1+𝑑 , where 𝑑 is shown on
the y-axis). During the initial stable state, when prediction
errors are low, RobustMPC steadily lowers its discount factor
leading to more aggressive bitrate selections (not shown).
This results in a rebuffering event 44 seconds into the session
(lowest graph shows buffer occupancy with 0 indicating a
rebuffering event). In contrast, MPC+Oboe does not incur a
rebuffering event and maintains a fixed 𝑑 during the initial
stable state. At 29 sec, it detects a change in the network state
and adapts its discount factor, leading to more conservative
bitrate selections.

4.4 Oboe vs. Pensieve
Pensieve [39] uses deep reinforcement learning [41, 42],
a combination of deep learning with reinforcement learn-
ing [50], and has been shown to outperform existing
ABRs, including RobustMPC [39] in some settings. Since

51

Oboe SIGCOMM ’18, August 20–25, 2018, Budapest, Hungary

Figure 9—The percentage improvement in QoE-lin of MPC+Oboe over Pensieve for the 0-6 Mbps throughput region. The distribution of average bitrate, rebuffering ratio and
bitrate change magnitude for the schemes is also shown.

Figure 10—Validation of our training
methodology for Pensieve.

Figure 11—QoE-lin of MPC+Oboe
compared to Pensieve

Figure 12—Benefits of specializing
Pensieve models. Each curve shows the
QoE improvement of MPC+Oboe rela-
tive to each Pensieve model.

Figure 13—QoE improvement of
MPC+Oboe over two ways of dy-
namically selecting from specialized
Pensieve models.

MPC+Oboe outperforms RobustMPC as well, we explore
how MPC+Oboe performs relative to Pensieve. Our exper-
iments use the Pensieve implementation provided by the
authors [11].

Pensieve Re-Training and Validation. Before evaluating
Pensieve on our dataset, we retrain Pensieve using the source
code on the trace dataset provided by the Pensieve authors
[11]. This helps us validate our retraining given that deep
reinforcement learning results are not easy to reproduce [29].

We experimented with five different initial entropy weights
in the author suggested range of 1 to 5, and linearly reduced
their values in a gradual fashion using plateaus, with five
different decrease rates until the entropy weight eventually
reached 0.1. This rate scheduler follows best-practice [55].
From the trained set of models, we then selected the best
performing model (an initial entropy weight of 1 reduced
every 800 iterations until it reaches 0.1 over 100K iterations)
and compared its performance to the pre-trained Pensieve
model provided by the authors. Figure 10 shows CDFs of
QoE-lin for the pretrained (Original) model and the model
trained by us (Retrained). The performance distribution of the
two models are almost identical over the test traces provided
by the Pensieve authors, thereby validating our retraining
methodology.

Having validated our retraining methodology, we trained
Pensieve on our dataset with the same complete strategy
described above. For this, we pick 1600 traces randomly from
our dataset with average throughput in the 0-6 Mbps range.
The number of training traces, the number of iterations per
trace, and the range of throughput are similar to [39]. We then
compare Pensieve and MPC+Oboe over a separate test set of
traces also in the range of 0-6 Mbps (§4.2).

Comparison with Pensieve. Figure 9(a) shows the CDF of
the percentage improvement in QoE-lin for MPC+Oboe
over Pensieve. MPC+Oboe outperforms Pensieve for 81% of
the sessions, with a QoE-lin improvement of 23.9% in aver-
age across all sessions. 25% of the sessions achieve more than
20% QoE-lin improvement. For the sessions MPC+Oboe
is unable to improve over Pensieve, the performance differ-
ence is mostly less than 5%. Figures 9(b), 9(c) and 9(d) show
that MPC+Oboe distributionally outperforms Pensieve with
respect to all underlying metrics. It reduces the number of
sessions with rebuffering from 10.7% to 5.3%, reduces the
median per chunk change magnitude by 43.9%, and improves
median and 95th percentile average bitrate by 2.6% and 4.7%
respectively. Finally, Figure 11 shows the CDF of QoE-lin
for MPC+Oboe and Pensieve, and indicates MPC+Oboe per-
forms distributionally better.

Analyzing Pensieve performance. To understand where
these performance improvements were coming from, we ex-
amined the relative performance of these two schemes in the
0-3 Mbps range (i.e., traces having an average throughput be-
tween 0-3 Mbps). In this more constrained range of network
conditions, we found that MPC+Oboe achieves bigger gains
over Pensieve (average QoE-lin improvement in 0-3 Mbps
is 46.23%). We hypothesize that this performance difference
stems from the fact that Pensieve builds a single model which
does not specialize to different throughput ranges.

To test this, we trained a separate Pensieve model only with
traces that have an average throughput between 0-3 Mbps
range and compared it with MPC+Oboe. Figure 12 shows
the per session QoE-lin improvement of MPC+Oboe com-
pared to Pensieve models trained for 0-3 Mbps (which we
refer to as Pens-Specialized) and for 0-6 Mbps. The me-
dian QoE-lin improvement with MPC+Oboe over Pens-
Specialized is 10.49%, while the median improvement over

52

SIGCOMM ’18, August 20–25, 2018, Budapest, Hungary Z. Akhtar et al.

Figure 14—Percentage improvement in bitrate and rebuffering of BOLA+Oboe over BOLA (a),(b) and HYB+Oboe over HYB (c), (d)

Figure 15—Average QoE-lin of MPC+Oboe with various throughput predictors

Pensieve is 19.9%. This indicates specializing the model does
improve Pensieve’s performance.

Thus, Pensieve’s model is as yet unable to create special-
ized versions of itself based on the session characteristics.
By contrast, Oboe specializes parameters for every network
state and therefore performs better. We have also validated
Pensieve’s inability to specialize in several other ways: build-
ing a model for the 3-6 Mbps and showing that it performs
better with test data in that range compared to a 0-6 Mbps
model; checking that a 0-6 Mbps model performs better for
data in that range compared to a 0-100 Mbps model; and
ensuring that these results hold even when the training set is
doubled. It is hard to pinpoint exactly why Pensieve is unable
to learn to be more conservative in the 0-3 Mbps range; deep
neural network models remain a black box despite efforts by
the machine learning community to make these models more
transparent [45], and obtaining such understanding may need
further advances in interpretable deep learning models.

A model selector with Pensieve . One way to improve Pen-
sieve’s specialization might be to train different models for
different throughput ranges and use the model more suited
to the network conditions. To test the efficacy of this ap-
proach, we used two models (specialized for 0-3 Mbps and
3-6 Mbps), and tried two different model selectors. Pens-
SelMultiple switches models throughout the session, using
the average throughput of the past 5 chunks. Pens-SelOnce
starts with the 0-6 Mbps model, selects either the 0-3 Mbps
or 3-6 Mbps model based on the average throughput of the
first 5 initial chunks, and does not switch thereafter.

Figure 13 shows CDFs of per-session QoE-lin improve-
ment of MPC+Oboe over these selectors. MPC+Oboe is able
to outperform both Pens-SelMultile and Pens-SelOnce, with
average QoE-lin improvements of 14.2% and 24.32% re-
spectively. Even though one of the model selection schemes

offers some improvements over the 0-6 Mbps Pensieve model,
the benefits are modest. We hypothesize that this behavior
is due to the dynamic selection of distinct Pensieve models,
which can interfere with reinforcement learning’s decision
choices, since, during training, the reinforcement learning
algorithm assumes there is no such third party intervention.

4.5 Oboe with other ABR Algorithms
Oboe can also improve other existing ABR algorithms such
as BOLA and HYB, which are designed to maximize average
bitrate while minimizing rebuffering.

BOLA. BOLA+Oboe tunes 𝛾 (§2), which determines how
much the algorithm strives to avoid rebuffering. BOLA, as
implemented in Dash.js, uses a fixed default value of 𝛾 =
−10.28. Figure 14(a) and 14(b) show CDFs of per session
performance improvement over BOLA with respect to av-
erage bitrate and rebuffering ratio. BOLA+Oboe maintains
the rebuffering ratio of BOLA while improving average bi-
trates for more than 83% of sessions with an overall increase
of 7.2% in average across all sessions. For sessions where
BOLA+Oboe does not outperform BOLA, its degradation is
less than 3.1%.

HYB. The performance of HYB is sensitive to the choice
of 𝛽 parameter, which HYB+Oboe tunes. In production, HYB
uses 𝛽 = 0.25, determined using A/B tests in a large-scale de-
ployment. Figure 14(c) and 14(d) show CDFs of per session
performance improvement of average bitrate and rebuffer-
ing ratio over HYB. As with BOLA, HYB+Oboe maintains
similar rebuffering ratios as shown in 14(d), but improves
bitrates for 98% of sessions with an overall average bitrate
improvement of 8.32% in average across all sessions.

4.6 Sensitivity experiments
Alternative throughput traces. To understand how Oboe

works on throughput datasets beyond those discussed in §4.2,
we evaluated Oboe on two other datasets, FCC [8] and HS-
DPA [46] that have been used in recent work [39, 59]. FCC
is a broadband dataset, while HSDPA contains throughput
traces collected from video streaming sessions over 3G net-
works in Norway using mobile devices. Our comparisons use
the traces and a Pensieve model pre-trained for those traces
available at [11]. We focus our evaluations on MPC+Oboe
and Pensieve, given that Pensieve has been shown to out-
perform existing ABR schemes including RobustMPC on

53

Oboe SIGCOMM ’18, August 20–25, 2018, Budapest, Hungary

Figure 16—Comparing HYB with multiple fixed configurations and HYB+Oboe for various settings

these traces. Our results show that MPC+Oboe continues to
perform better than RobustMPC on these traces. Further, rela-
tive to Pensieve, MPC+Oboe improves QoE-lin by an aver-
age of 6.94% across the FCC dataset and 10.92% across the
HSDPA dataset. These improvements are more modest than
those in Figure 9(a). The vast majority of traces in the FCC
and HSDPA set have an average throughput under 3 Mbps
(over 95% for FCC and 98% for HSDPA). The results cor-
roborate Figure 12 which indicates that MPC+Oboe provides
more modest gains over Pensieve when the latter is trained
and evaluated on datasets with a narrow throughput range.
MPC+Oboe provides larger gains in settings like the traces
discussed in §4.2, where only 41% traces are under 3 Mbps
and 59% are in the 3-6 Mbps range.

Alternative throughput prediction methods. Our experi-
ments with RobustMPC rely on throughput prediction based
on the harmonic mean of prior throughput samples (follow-
ing earlier work [39, 59]), with Oboe tuning the configura-
tion to compensate for prediction errors. We next consider
if Oboe’s benefits hold if RobustMPC were to have more
accurate throughput predictions, potentially by using alter-
nate prediction methods [49]. Rather than using a specific
prediction technique, we consider an ideal (and unachievable)
approach that we denote as Ideal(T), which can exactly predict
the average throughput over the next T seconds. Our experi-
ments were conducted in simulation, using the VirtualPlayer,
and the testbed experiment traces (§4.2).

Figure 15 shows the average QoE-lin across the traces
for RobustMPC and MPC+Oboe using both the default har-
monic mean approach and Ideal(T) for different values of T.
Although RobustMPC performs better with an ideal predictor,
Oboe still provides benefits, achieving an average improve-
ment in QoE-lin of 6.34% for Ideal(5) and of 1.8% for
Ideal(10), compared to a 16.1% improvement with the har-
monic mean estimator. While the magnitude of benefits is
smaller with the ideal prediction approach, in practice Oboe
will likely result in larger benefits, since even more sophisti-
cated schemes [49] cannot achieve the ideal predictions, and
the errors are likely to grow with larger T.

Oboe can improve performance over RobustMPC even
when an Ideal(T) prediction method is used for two reasons.
First, 𝑇 may not match the duration of chunk downloads

with RobustMPC, which depends on the exact sequence of
bitrates chosen during the look-ahead window. The duration
is not known a priori, since RobustMPC itself determines the
bitrates based on a provided prediction. Second, the decisions
made by RobustMPC are over a small look-ahead window,
which may not guarantee optimality over the entire session
duration.

4.7 Oboe Across Various Settings
In §4.5 we have shown that Oboe outperforms other ABR
algorithms when compared to their default configurations.
We now explore, for HYB, whether Oboe outperforms all
parameter settings of HYB and whether it can tune ABRs
based on content type and publisher specifications. For these
experiments, we use the VirtualPlayer described in §3.2.

Comparison against all fixed configurations. To explore
different fixed configurations, we run HYB with 10 different
fixed 𝛽s and compare with HYB+Oboe. We summarize the
performance for each configuration by considering the (i)
median of the average bitrate and the (ii) 90th percentile of
the rebuffering ratio across test traces. In this experiment, we
also consider an Oracle which is the best fixed configuration
for each throughput trace with respect to two metrics that
HYB tries to optimize.

Figure 16(a) and 16(b) compare HYB, HYB+Oboe and
Oracle over desktop, and mobile traces respectively. While
Oracle and HYB+Oboe are depicted as single dots since their
performance is uniquely determined, we present a frontier
for HYB that shows its performance for different fixed con-
figuration. Figure 16(a) shows that HYB+Oboe outperforms
HYB in the sense that there is no fixed configuration for HYB
that does better than HYB+Oboe performance. HYB+Oboe
improves the average bitrates of the median session by 3.2%,
while achieving similar rebuffering ratio. Alternately, it re-
duces the 90th percentile rebuffering ratio from 1.9% to 0%,
while maintaining similar bitrates. A similar result holds for
mobile traces (Figure 16(b)). Thus, even if publishers were
to find the best fixed parameter choice for HYB, Oboe would
outperform that choice because it dynamically adapts the
parameters.

Comparison under different publisher specifications.
Our results so far are for a VoD (video on demand) setting
with a maximum buffer size of 2 minutes. Figure 16(c)

54

SIGCOMM ’18, August 20–25, 2018, Budapest, Hungary Z. Akhtar et al.

Figure 17—Avg. of avg. bitrate and
fraction of sessions with rebuffering for
HYB+Oboe and different publisher pref-
erences

Figure 18—Avg. of avg. bitrate and
fraction of sessions with rebuffering
for RobustMPC and different publisher
preferences

depicts performance for live video (which uses a maximum
buffer size of 20 seconds to mimic live settings). HYB+Oboe
outperforms HYB for this setting, though we note that the
bitrate of both approaches degrades relative to the VoD
setting since the baseline HYB switches to higher bitrates
more conservatively owing to the smaller buffer sizes.

Finally, Figure 16(d) depicts performance for higher bi-
trate levels ({1002, 1434, 2738, 3585, 4661, 5886}𝑘𝑏𝑝𝑠) and
a chunk size of 5 seconds. Even for these choices, HYB+Oboe
outperforms HYB, demonstrating its ability to adapt to differ-
ent publisher specification.

Accommodating publisher’s rebuffering tolerance. Oboe
allows the publisher to optionally specify explicit rebuffer-
ing preferences (§3). ABR algorithms such as RobustMPC
which use the QoE-lin function may permit this indirectly
by adjusting QoE-lin weights (§2.1). Figure 17 shows the
effectiveness of these approaches, showing the average of
average bitrates, and the fraction of sessions with rebuffering
for HYB+Oboe. As the publisher makes its rebuffering pref-
erence stricter (from 2%-0%), HYB+Oboe achieves lower
rebuffering ratios close to the target rebuffering tolerance. In
contrast, Figure 18 shows that RobustMPC is less effective
at controlling rebuffering by adjusting its rebuffering penalty
when the weight on the rebuffering term is varied between
100 (strictly avoid rebuffering) to 4.3.5 We find that even with
a very high rebuffering penalty of 100, RobustMPC causes
rebuffering in 11% of the sessions. This shows the benefit of
Oboe’s approach which gives direct control over the underly-
ing metrics.

4.8 Oboe Overhead
Computing the ConfigMap incurs a one-time cost, since the
map can be reused across all clients once the it is built. Com-
puting the best parameter configuration for one network state
takes about 12 seconds on a single core. This task is perfectly
parallelizable, so computing 10K network states (§3) will
take approximately 3.5 hours to explore with two machines
of 48 cores each. We have also analyzed the processing over-
head incurred by the ChangeDetector module of Oboe. We
measure the time taken by ChangeDetector for every decision

5We used a change penalty of 0 for fair comparison.

Figure 19—Comparing prototype Oboe with commercial client side ABR implemen-
tation in average bitrate and rebuffering ratio.

Figure 20—Time between consecutive
bitrate switches for two commercial
ABRs

Figure 21—Variance in bitrate levels
across videos from two content publish-
ers.

cycle across our experiments, and the measurement indicates
that the median processing time of ChangeDetector is around
14 ms. Since each decision is made at a chunk boundary and
chunks are 4 seconds, ChangeDetector accounts for less than
0.35% overhead.

5 DEPLOYMENT CONSIDERATIONS
The offline stage of Oboe can be run on the cloud, but several
choices exist for the online stage, ranging from embedding
the online stage entirely in the client player, or moving some
or all of the online stage to the cloud. In our implementation,
Oboe’s components run on the server side. This mimics a
cloud implementation, which has the benefits of other cloud
software: fast update deployment, device independence, etc.
[4]. We leave a detailed comparison of these choices to future
work, but explore, in this section, the feasibility of running
the online stage on the cloud.

To this end, we have implemented a restricted version of
HYB+Oboe on AWS. This limited version of Oboe imple-
ments HYB and incorporates tuning based on publisher speci-
fications but not network state. In our implementation, a client
player periodically reports player state (such as buffer length
and current bitrate) and throughput samples to a Oboe cloud
server and receives bitrate decisions in return. For 10 player
features and two chunk downloads per second, the commu-
nication overhead is 6.4 Kbps, negligibly small compared to
the size of video chunks. Figures 19(a) and 19(b) compare the
performance of this implementation against a client player
running HYB over 20K sessions collected during a two-week
pilot deployment. Oboe is comparable in performance to the
client side player and even improves bitrate slightly (because
it was tuned to this publisher’s specification).

55

Oboe SIGCOMM ’18, August 20–25, 2018, Budapest, Hungary

We expected a cloud implementation would perform worse
because of the latency induced by client-server communica-
tion. However, we found that most of the bitrate switching
decisions occur on timescales much longer than the client-
server latencies. Figure 20 shows the CDF of the time interval
between consecutive bitrate switches for ABR algorithms in
two widely used video players(Adobe’s Flash [3] and Mi-
crosoft Smooth Streaming [1]). The figure shows that over
95% of switching decisions occur at intervals higher than
1 second for both players. This suggests that a cloud-based
deployment is viable.

6 DISCUSSION AND FUTURE WORK
Performance improvements for all sessions. As our re-

sults (e.g., Figure 6(a)) show, Oboe improves the perfor-
mance for most but not all sessions relative to the ABR al-
gorithm it tunes. For instance, after inspecting the results
in §4.3, we have found that MPC+Oboe typically improves
performance relative to RobustMPC by reducing rebuffering
and/or the magnitude of bitrate changes, but at the expense of
slightly lower bitrates. The resulting QoE-lin is improved
for most sessions, indicating Oboe does a good job of properly
balancing the various factors, but some sessions see lower
QoE-lin. More generally, designing an ABR approach that
can optimize the performance of all sessions is a hard problem
that needs more research.

Sharing ConfigMap across videos. Oboe need not per-
form offline precomputation for each individual video, as
it can use a single ConfigMap for a class of videos that follow
a similar bitrate encoding scheme. Figure 21 shows that two
popular video publishers use similar encoding schemes across
two thousand videos each. Publisher 1 uses 7 distinct bitrate
levels, and the coefficient of variance across bitrates within
each level is only 0.13, while Publisher2, uses 10 distinct
bitrate levels, and the coefficient of variance across bitrates
within each level is only 0.067. This indicates the potential to
share a single ConfigMap across videos.

Generality of Oboe. While we have shown that Oboe can
tune a variety of configuration parameters across several ABR
algorithms, whether Oboe can tune all algorithms and all pa-
rameters is an open question. It is unclear if Oboe can directly
augment Pensieve, since a model learned by reinforcement
learning may not interact well with intermediaries such as
Oboe. However, combining the benefits of Oboe and Pensieve
in other ways is an interesting avenue for future work.

7 RELATED WORK
Tuning ABR Algorithm Configurations. The BBA2 algo-

rithm [32] tunes its lower reservoir based on buffer occupancy
dynamics, while MPC [59] adapts its throughput discount fac-
tor based on past prediction errors (§2). In contrast to such ad-
hoc heuristics, Oboe selects configuration parameters based

on network state, and publisher specifications. The approach
is generically applicable to many ABR algorithms. Newer
congestion control protocols like BBR [19] estimate network
throughput, which if exposed, could benefit Oboe.

Learning ABR Algorithms. Among ABR algorithms that
use Reinforcement Learning and other machine learning tech-
niques [20, 21, 39, 40, 53], Pensieve [39] has been shown to
perform the best. While Pensieve does not specialize to differ-
ent throughput regimes, Oboe performs better by specializing
parameter values for each network state independently.

Other work in self-tuning. Beyond ABR algorithms, self-
tuning approaches have been explored in other contexts. Win-
stein et al. [56] used simulations to determine TCP parameters
for different settings, while Semke et al. [47] proposed tuning
TCP socket buffers to ensure high throughput. More gener-
ally, Google Vizier [28] performs such black-box tuning as
a service. While Vizier can potentially be used to implement
the offline phase of Oboe, our work identifies underlying
principles (such as the piecewise stationarity of available
throughput) that forms the basis for the tuning.

Video QoE. Several researchers have pointed out that
sub-optimal ABR performance can significantly impact
user-engagement and hence revenue [16, 37]. Others have
looked at quality issues that occur when multiple players
start to compete for bandwidth [15, 30, 31, 34] In contrast,
Oboe improves the QoE performance of several ABR
algorithms across a range of different network conditions by
automatically tuning their parameters.

8 CONCLUSION
Oboe is a system for automatically tuning ABR algorithms
by adapting ABR configurations in realtime to match the
current network state. Picking configurations in a manner
informed by network state and publisher preferences distin-
guishes Oboe’s approach from heuristics used today that do
not consider these factors. Oboe significantly improves the
performance of BOLA, HYB and RobustMPC; further, for
nearly 80% of the sessions in our dataset, Oboe integrated
with RobustMPC improves QoE-lin relative to Pensieve
and the improvements exceed 20% for 25% of the sessions.

Acknowledgments. We thank our shepherd, Mohammad Al-
izadeh and the anonymous reviewers for their constructive
feedback. We thank Oleg White, Yan Li and Shubo Liu
for their assistance obtaining the throughput data and for
helpful discussions. This work was funded in part by the
National Science Foundation (NSF) Awards CNS-1618921,
CNS-1564242, and CNS-1413978; and the ARO, under the
U.S. Army Research Laboratory award W911NF-09-2-0053.
Any opinions, findings and conclusions or recommendations
expressed in this material are those of the authors and do not
necessarily reflect the views of NSF or ARO.

56

SIGCOMM ’18, August 20–25, 2018, Budapest, Hungary Z. Akhtar et al.

BIBLIOGRAPHY
[1] Microsoft Smooth Streaming. http://www.iis.net/downloads/microsoft/smooth-

streaming.
[2] Toward A Practical Perceptual Video Quality Metric. https://medium.

com/netflix-techblog/toward-a-practical-perceptual-video-quality-metric-
653f208b9652.

[3] Adobe OSMF player. http://www.osmf.org.
[4] Oracle: 5 Reasons to Consider SaaS for Your Business Applications. http://www.

oracle.com/us/solutions/cloud/saas-business-applications-1945540.pdf.
[5] Chrome Remote Interface. https://github.com/cyrus-and/chrome-remote-

interface.
[6] Cisco: It Came to Me in a Stream. https://www.cisco.com/web/about/ac79/docs/

sp/Online-Video-Consumption_Consumers.pdf.
[7] DASH Industry Forum. https://github.com/Dash-Industry-Forum/dash.js.
[8] Federal Communications Commission. Raw Data - Measuring Broadband Amer-

ica. www.fcc.gov/reports-research/reports/measuring-broadband-america/raw-
data-measuring-broadband-america-2016.

[9] Google-Chrome: Chrome DevTools Protocol. https://chromedevtools.github.io/
devtools-protocol/tot/Network/.

[10] Bayesian Changepoint Detection. https://github.com/hildensia/bayesian_
changepoint_detection.

[11] Pensieve. https://github.com/hongzimao/pensieve.
[12] DASH Industry Forum. https://dash.akamaized.net/envivio/EnvivioDash3.
[13] Sandvine: Global Internet phenomena report . https://www.sandvine.com/

downloads/general/global-internet-phenomena/2014/2h-2014-global-internet-
phenomena-report.pdf.

[14] Ryan Prescott Adams and David JC MacKay. Bayesian Online Changepoint
Detection. In arXiv:0710.3742v1, 2007.

[15] Saamer Akhshabi, Lakshmi Anantakrishnan, Ali C Begen, and Constantine
Dovrolis. What Happens when HTTP Adaptive Streaming Players Compete for
Bandwidth? In the International Workshop on Network and Operating System
Support for Digital Audio and Video, NOSSDAV, 2012.

[16] Athula Balachandran, Vyas Sekar, Aditya Akella, Srinivasan Seshan, Ion Stoica,
and Hui Zhang. Developing a Predictive Model of Quality of Experience for
Internet Video. In Proceedings of the ACM Conference on Special Interest Group
on Data Communication, SIGCOMM, 2013.

[17] Hari Balakrishnan, Mark Stemm, Srinivasan Seshan, and Randy H Katz. Ana-
lyzing Stability in Wide-area Network Performance. ACM SIGMETRICS Perfor-
mance Evaluation Review, 25:2–12, 1997.

[18] Daniel Barry and John A Hartigan. A Bayesian Analysis for Change Point Prob-
lems. Journal of the American Statistical Society, 88(421):309–319, 1993.

[19] Neal Cardwell, Yuchung Cheng, C. Stephen Gunn, Soheil Hassas Yeganeh, and
Van Jacobson. BBR: Congestion-Based Congestion Control. ACM Queue, 14:
20–53, 2016.

[20] Federico Chiariotti, Stefano D’Aronco, Laura Toni, and Pascal Frossard. Online
Learning Adaptation Strategy for DASH Clients. In Proceedings of the Interna-
tional Conference on Multimedia Systems, MMSys, 2016.

[21] Maxim Claeys, Steven Latré, Jeroen Famaey, Tingyao Wu, Werner Van Leek-
wijck, and Filip De Turck. Design and Optimisation of a (FA)Q-learning-based
HTTP Adaptive Streaming Client. Connection Science, 26(1):25–43, 2014.

[22] Frédéric Desobry, Manuel Davy, and Christian Doncarli. An Online Kernel
Change Detection Algorithm. IEEE Transactions on Signal Processing, 53(8):
2961–2974, 2005.

[23] Florin Dobrian, Vyas Sekar, Asad Awan, Ion Stoica, Dilip Joseph, Aditya Gan-
jam, Jibin Zhan, and Hui Zhang. Understanding the Impact of Video Quality on
User Engagement. In Proceedings of the ACM Conference on Special Interest
Group on Data Communication, SIGCOMM, 2011.

[24] Paul Fernhead. Exact and Efficient Bayesian Inference for Multiple Changepoint
Problems. Statistics and Computing, 16(2):203–213, 2006.

[25] Tobias Flach, Pavlos Papageorge, Andreas Terzis, Luis Pedrosa, Yuchung Cheng,
Tayeb Karim, Ethan Katz-Bassett, and Ramesh Govindan. An Internet-Wide
Analysis of Traffic Policing. In Proceedings of the ACM Conference on Special
Interest Group on Data Communication, SIGCOMM, 2016.

[26] Wayne A Fuller. Introduction to Statistical Time Series. John Wiley and Sons,
1976.

[27] Mojgan Ghasemi, Partha Kanuparthy, Ahmed Mansy, Theophilus Benson, and
Jennifer Rexford. Performance Characterization of a Commercial Video Stream-
ing Service. In Proceedings of the ACM Conference on Internet Measurement
Conference, IMC, 2016.

[28] Daniel Golovin, Benjamin Solnik, Subhodeep Moitra, Greg Kochanski, John
Karro, and D. Sculley. Google Vizier: A Service for Black-Box Optimization.
In Proceedings of the ACM International Conference on Knowledge Discovery
and Data Mining, SIGKDD, 2017.

[29] Peter Henderson, Riashat Islam, Philip Bachman, Joelle Pineau, Doina Precup,
and David Meger. Deep Reinforcement Learning that Matters. In Proceedings of
the Association for Advancement of Artificial Intelligence, AAAI, 2018.

[30] Rémi Houdaille and Stéphane Gouache. Shaping HTTP Adaptive Streams for a
Better User Experience. In Proceedings of the Multimedia Systems Conference,
MMSys, 2012.

[31] Te-Yuan Huang, Nikhil Handigol, Brandon Heller, Nick McKeown, and Ramesh
Johari. Confused, Timid, and Unstable: Picking a Video Streaming Rate is Hard.
In Proceedings of the ACM Conference on Internet Measurement Conference,
IMC, 2012.

[32] Te-Yuan Huang, Ramesh Johari, Nick McKeown, Matthew Trunnell, and Mark
Watson. A Buffer-based Approach to Rate Adaptation: Evidence from a Large
Video Streaming Service. In Proceedings of the ACM Conference on Special
Interest Group on Data Communication, SIGCOMM, 2014.

[33] Daniel R. Jeske, Veronica Montes De Oca, Wolfgang Bischoff, and Mazda Mar-
vasti. Cusum Techniques for Timeslot Sequences with Applications to Network
Surveillance. Computational Statistics and Data Analysis, 53:4332–4344, 2009.

[34] Junchen Jiang, Vyas Sekar, and Hui Zhang. Improving Fairness, Efficiency, and
Stability in HTTP-based Adaptive Video Streaming with FESTIVE. In Proceed-
ings of the ACM International Conference on Emerging Networking Experiments
and Technologies, CoNEXT, 2012.

[35] James Jobin, Michalis Faloutsos, Satish K Tripathi, and Srikanth V Krishna-
murthy. Understanding the Effects of Hotspots in Wireless Cellular Networks.
In Proceedings of the Conference of the IEEE Computer and Communications
Societies, INFOCOM, 2004.

[36] Eamonn J. Keogh, Selina Chu, David Hart, and Michael J. Pazzani. An Online
Algorithm for Segmenting Time Series. In Proceedings of the IEEE International
Conference on Data Mining, ICDM, 2001.

[37] S. Shunmuga Krishnan and Ramesh K. Sitaraman. Video Stream Quality Im-
pacts Viewer Behavior: Inferring Causality Using Quasi-experimental Designs.
In Proceedings of the ACM Conference on Internet Measurement Conference,
IMC, 2012.

[38] Dong Lu, Yi Qiao, Peter A Dinda, and Fabian E Bustamante. Characterizing and
Predicting TCP Throughput on the Wide Area Network. In IEEE International
Conference on Distributed Computing Systems, ICDCS, 2005.

[39] Hongzi Mao, Ravi Netravali, and Mohammad Alizadeh. Neural Adaptive Video
Streaming with Pensieve. In Proceedings of the ACM Conference on Special
Interest Group on Data Communication, SIGCOMM, 2017.

[40] Virginia Martín, Julián Cabrera, and Narciso García. Design, Optimization and
Evaluation of a Q-learning HTTP Adaptive Streaming Client. IEEE Transactions
on Consumer Electronics, 62(4):380–388, 2016.

[41] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Ve-
ness, Marc G Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidje-
land, Georg Ostrovski, et al. Human-level Control Through Deep Reinforcement
Learning. Nature, 518(7540):529–533, 2015.

[42] Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Tim-
othy Lillicrap, Tim Harley, David Silver, and Koray Kavukcuoglu. Asynchronous
Methods for Deep Reinforcement Learning. In Proceedings of the International
Conference on Machine Learning, ICML, 2016.

[43] Hossein Pishro-Nik. Introduction to Probability, Statistics and Random Pro-
cesses. Kappa Research, 2014.

[44] Thanawin Rakthanmanon, Eamonn J. Keogh, Stefano Lonardi, and Scott Evans.
Time Series Epenthesis: Clustering Time Series Streams Requires Ignoring Some
Data. In Proceedings of the International Conference on Data Mining, ICML,
2011.

[45] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. Why Should I Trust
You?: Explaining the Predictions of Any Classifier. In Proceedings of the ACM
International Conference on Knowledge Discovery and Data Mining, SIGKDD,
2016.

[46] Haakon Riiser, Paul Vigmostad, Carsten Griwodz, and Pål Halvorsen. Commute
Path Bandwidth Traces from 3G Networks: Analysis and Applications. In Pro-
ceedings of the ACM Multimedia Systems Conference, MMSys, 2013.

[47] Jeffrey Semke, Jamshid Mahdavi, and Matthew Mathis. Automatic TCP Buffer
Tuning. In Proceedings of the ACM Conference on Special Interest Group on
Data Communication, SIGCOMM, 1998.

[48] Kevin Spiteri, Rahul Urgaonkar, and Ramesh K Sitaraman. BOLA: Near-optimal
Bitrate Adaptation for Online Videos. In Proceedings of the IEEE International
Conference on Computer Communications, INFOCOM, 2016.

[49] Yi Sun, Xiaoqi Yin, Junchen Jiang, Vyas Sekar, Fuyuan Lin, Nanshu Wang, Tao
Liu, and Bruno Sinopoli. CS2P: Improving Video Bitrate Selection and Adapta-
tion with Data-Driven Throughput Prediction. In Proceedings of the ACM Con-
ference on Special Interest Group on Data Communication, SIGCOMM, 2016.

[50] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction.
MIT press Cambridge, 1998.

[51] Guibin Tian and Yong Liu. Towards Agile and Smooth Video Adaptation in
Dynamic HTTP Streaming. In the ACM International Conference on Emerging
Networking Experiments and Technologies, CoNEXT, 2012.

[52] Guillaume Urvoy-Keller. On the Stationarity of TCP Bulk Data Transfers. In
Proceedings of the Passive and Active Measurement Conference, PAM, 2005.

57

http: //www. iis. net /downloads /microsoft /smooth-streaming
http: //www. iis. net /downloads /microsoft /smooth-streaming
https: //medium.com /netflix-techblog /toward-a- practical-perceptual- video-quality-metric-653f208b9652
https: //medium.com /netflix-techblog /toward-a- practical-perceptual- video-quality-metric-653f208b9652
https: //medium.com /netflix-techblog /toward-a- practical-perceptual- video-quality-metric-653f208b9652
http://www.osmf.org.
http://www.oracle.com/us/solutions/cloud/saas-business-applications-1945540.pdf
http://www.oracle.com/us/solutions/cloud/saas-business-applications-1945540.pdf
https://github.com/cyrus-and/chrome-remote-interface
https://github.com/cyrus-and/chrome-remote-interface
https://www.cisco.com/web/about/ac79/docs/sp/Online-Video-Consumption_Consumers.pdf
https://www.cisco.com/web/about/ac79/docs/sp/Online-Video-Consumption_Consumers.pdf
https://github.com/Dash-Industry-Forum/dash.js
www.fcc.gov/reports-research/reports/measuring-broadband-america/raw-data-measuring-broadband-america-2016
www.fcc.gov/reports-research/reports/measuring-broadband-america/raw-data-measuring-broadband-america-2016
https://chromedevtools.github.io/devtools-protocol/tot/Network/
https://chromedevtools.github.io/devtools-protocol/tot/Network/
https: //github.com /hildensia /bayesian_changepoint_detection
https: //github.com /hildensia /bayesian_changepoint_detection
https://github.com/hongzimao/pensieve
https://dash.akamaized.net/envivio/EnvivioDash3
https://www.sandvine.com/downloads/general/global-internet-phenomena/2014/2h-2014-global-internet-phenomena-report.pdf
https://www.sandvine.com/downloads/general/global-internet-phenomena/2014/2h-2014-global-internet-phenomena-report.pdf
https://www.sandvine.com/downloads/general/global-internet-phenomena/2014/2h-2014-global-internet-phenomena-report.pdf

Oboe SIGCOMM ’18, August 20–25, 2018, Budapest, Hungary

[53] Jeroen van der Hooft, Stefano Petrangeli, Maxim Claeys, Jeroen Famaey, and
Filip De Turck. A Learning-based Algorithm for Improved Bandwidth-awareness
of Adaptive Streaming Clients. In Symposium on Integrated Network Manage-
ment, IM, 2015.

[54] Li Wei and Eamonn Keogh. Semi-supervised Time Series Classification. In
Proceedings of the ACM International Conference on Knowledge Discovery and
Data Mining, SIGKDD, 2006.

[55] Ronald J Williams and Jing Peng. Function Optimization using Connectionist
Reinforcement Learning Algorithms. Connection Science, 3(3):241–268, 1991.

[56] Keith Winstein and Hari Balakrishnan. TCP Ex Machina: Computer-generated
Congestion Control. In Proceedings of the ACM Conference on Special Interest
Group on Data Communication, SIGCOMM, 2013.

[57] Xuan Xiang and Kevin Murphy. Modelling Changing Dependency Structure in
Multivariate Time Series. In Proceedings of the International Conference on
Data Mining, ICML, 2007.

[58] Kenji Yamanishi and Jun-ichi Takeuchi. A Unifying Framework for Detecting
Outliers and Change Points from Non-stationary Time Series Data. In Proceed-
ings of the ACM International Conference on Knowledge Discovery and Data
Mining, SIGKDD, 2002.

[59] Xiaoqi Yin, Abhishek Jindal, Vyas Sekar, and Bruno Sinopoli. A Control-
Theoretic Approach for Dynamic Adaptive Video Streaming over HTTP. In
Proceedings of the ACM Conference on Special Interest Group on Data Com-
munication, SIGCOMM, 2015.

[60] Yin Zhang and Nick Duffield. On the Constancy of Internet Path Properties. In
Proceedings of the ACM SIGCOMM Workshop on Internet Measurement, 2001.

58

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Background on ABR Algorithms
	2.2 Ensuring High QoE for All Users

	3 Design
	3.1 Representing Network State
	3.2 Offline Mapping of Network States
	3.3 Online ABR Tuning

	4 Evaluation
	4.1 Metrics
	4.2 Methodology
	4.3 with
	4.4 vs. Pensieve
	4.5 with other ABR Algorithms
	4.6 Sensitivity experiments
	4.7 Across Various Settings
	4.8 Overhead

	5 Deployment Considerations
	6 Discussion and Future Work
	7 Related Work
	8 Conclusion
	Bibliography

