
SODA: An Adaptive Bitrate Controller for Consistent
High-Quality Video Streaming

Tianyu Chen

University of Massachusetts Amherst

Amherst, MA, USA

tianyuchen@umass.edu

Yiheng Lin

California Institute of Technology

Pasadena, CA, USA

yihengl@caltech.edu

Nicolas Christianson

California Institute of Technology

Pasadena, CA, USA

nchristianson@caltech.edu

Zahaib Akhtar

Amazon Prime Video / NCSU

Sunnyvale, CA, USA

akhtz@amazon.com

Sharath Dharmaji

Amazon Prime Video

Sunnyvale, CA, USA

sharatdr@amazon.com

Mohammad Hajiesmaili

University of Massachusetts Amherst

Amherst, MA, USA

hajiesmaili@cs.umass.edu

Adam Wierman

California Institute of Technology

Pasadena, CA, USA

adamw@caltech.edu

Ramesh K. Sitaraman

University of Massachusetts Amherst

Amherst, MA, USA

ramesh@cs.umass.edu

ABSTRACT
The primary objective of adaptive bitrate (ABR) streaming is to

enhance users’ quality of experience (QoE) by dynamically adjust-

ing the video bitrate in response to changing network conditions.

However, users often find frequent bitrate switching frustrating

due to the resulting inconsistency in visual quality over time, es-

pecially during live streaming when buffer lengths are short. In

this paper, we propose a practical smoothness optimized dynamic

adaptive (SODA) controller that specifically addresses this problem

while remaining deployable. SODA is backed by theoretical guaran-

tees and has shown superior performance in empirical evaluations.

Specifically, our numerical simulations show a 9.55% to 27.8% QoE

improvement and our prototype evaluation shows a 30.4% QoE im-

provement compared to the state-of-the-art baselines. In order to be

widely deployable, SODA performs bitrate horizon planning in poly-

nomial time compared to brute force approaches that suffer from

exponential complexity. To demonstrate its real-world practicality,

we deployed SODA on a wide range of devices within the production

network of Amazon Prime Video. Production experiments show

that SODA reduced bitrate switching by up to 88.8% and increased

average stream viewing duration by up to 5.91% compared to a

fine-tuned production baseline.

CCS CONCEPTS
• Information systems→Multimedia streaming; • Theory of
computation→ Online algorithms; Theory and algorithms
for application domains.

ACM SIGCOMM ’24, August 4–8, 2024, Sydney, NSW, Australia
© 2024 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0614-1/24/08

https://doi.org/10.1145/3651890.3672260

KEYWORDS
Adaptive bitrate streaming, Smoothed online convex optimization

ACM Reference Format:
Tianyu Chen, Yiheng Lin, Nicolas Christianson, Zahaib Akhtar, Sharath

Dharmaji, Mohammad Hajiesmaili, Adam Wierman, and Ramesh K. Sitara-

man. 2024. SODA: An Adaptive Bitrate Controller for Consistent High-

Quality Video Streaming. In ACM SIGCOMM 2024 Conference (ACM SIG-
COMM ’24), August 4–8, 2024, Sydney, NSW, Australia. ACM, New York, NY,

USA, 32 pages. https://doi.org/10.1145/3651890.3672260

1 INTRODUCTION
With the growth of online video streaming, users nowadays stream

videos from a highly diverse set of devices, including laptops, mobile

devices, smart TVs, set-top boxes, game consoles, etc. These devices

span a wide spectrum of hardware capabilities and connect to the

Internet in a multitude of ways, e.g., wireless, cellular, cable, etc. To

ensure a high quality of experience (QoE) across all devices, video

providers utilize adaptive bitrate (ABR) streaming that tailors video

delivery to specific devices and network conditions.

The goal of ABR streaming is to deliver a video at the highest sus-

tainable quality over time-varying network conditions. To achieve

this, a video source is encoded at different bitrates corresponding

to different resolutions, e.g., 720p, 1080p, 1440p, etc. Each encod-

ing is in turn temporally partitioned into a sequence of segments,
e.g., 2 seconds of video content. An ABR controller inside a user’s

video player then selects a suitable bitrate for each segment. Finally,

downloaded segments are stored in a buffer, till they are rendered.

Past studies have shown that a user’s QoE is maximized by de-

livering the video at the highest possible quality with minimal

rebuffering and bitrate switching. It has been shown that a 1% in-

crease in rebuffering time is correlated with a 3-minute reduction in

the viewing duration [7] and frequent bitrate switching is strongly

correlated with a user abandoning the session [21]. Going beyond

correlational studies, the significant causal impact of rebuffering

and other QoE performance metrics on key measures of user behav-

ior was first established in [9]. However, jointly optimizing all three

key components of QoE, i.e., video quality, rebuffering and bitrate

613

This work is licensed under a Creative Commons Attribution International 4.0 License.

https://orcid.org/0009-0007-2814-7425
https://orcid.org/0000-0001-6524-2877
https://orcid.org/0000-0001-8330-8964
https://orcid.org/0000-0001-8999-1530
https://orcid.org/0009-0009-8459-7302
https://orcid.org/0000-0001-9278-2254
https://orcid.org/0000-0002-5923-0199
https://orcid.org/0000-0003-0558-6875
https://doi.org/10.1145/3651890.3672260
https://doi.org/10.1145/3651890.3672260
https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3651890.3672260&domain=pdf&date_stamp=2024-08-04

ACM SIGCOMM ’24, August 4–8, 2024, Sydney, NSW, Australia Chen et al.

Figure 1: Video stream duration is negatively correlated with
bitrate switching rate. Users watch < 10% of the stream when
bitrate switching rate is > 20%.

switching, is non-trivial as they are locked in a three-way trade-off.

An ideal ABR controller seeks to push the trade-off boundary and

optimize all three QoE components simultaneously.
Between on-demand and live streaming, the latter is more chal-

lenging as the player buffer is restricted to 10 - 20 seconds (to remain

close to actual live action), which is in contrast to 60 - 180 seconds

of buffer in on-demand streaming. Consequently, live streaming

has higher susceptibility to rebuffering and bitrate switching. To

understand the impact of bitrate switching, Figure 1 shows the re-

lationship between the viewing percentage of a stream and bitrate

switching rate for a sports event on a large-scale video streaming

provider. To minimize potential confounders such as rebuffering

and low quality, the plot is focused on short-lived sessions (< 25%

of stream viewed) with at least HD quality and no rebuffering. The

line of best fit shows that users watch < 10% of the stream when

bitrate switching rate is > 20%. While our proposed ABR controller

works for both on-demand and live streaming, our evaluations use

live streams that represents a more challenging use case.

Our Contributions.We propose a novel smoothness optimized

dynamic adaptive (SODA) controller that provides theoretical QoE
guarantees while exhibiting superior empirical performance in

simulation, prototype, and production experiments. We make the

following specific contributions:

1) Theoretical Foundations of ABR Controller Design. SODA
is the first ABR controller to provably optimize all three key
components of QoE, namely, video quality, rebuffering and bi-

trate switching. Unlike prior work such as BOLA [36, 44] that use
Lyapunov methods to optimize the first two components, we

use a new framework based on recent advances in smoothed

online convex optimization (SOCO) [13, 25, 26, 33–35, 43] to

simultaneously optimize all three QoE components. To enable

the application of SOCO, we model the rebuffering minimiza-

tion requirement in a novel fashion using the notion of buffer

stability. We prove that SODA is near-optimal and achieves QoE

within a small factor of the offline optimal QoE (Theorem 4.1).

2) Better QoE Across Empirical Evaluations. We evaluated

SODA in three settings: numerical simulations, prototype evalua-

tion, and production deployment within Amazon Prime Video

serving actual users. Our numerical simulations show a 9.55% to

Figure 2: BOLA’s [44] decision boundaries are spaced out for
on-demand streaming, but tiny fluctuations in buffer level
can cause bitrate switching for live streaming.

27.8% QoE improvement and our prototype evaluation shows a

30.4% QoE improvement compared to the state-of-the-art base-

lines. Production live streaming experiments in Amazon Prime

Video show that SODA reduced bitrate switching by a significant

up to 88.8% and increased average stream viewing duration by

up to 5.91% (> 5 minutes longer sessions) compared to a fine-

tuned production baseline. See Table 1 for a summary of our key

findings about SODA as compared to baseline ABR controllers.

3) Robustness Against Throughput Prediction Errors. Most

ABR controllers rely on and are sensitive to predictions of the

future network throughput. Our SOCO framework allows us to

design robust ABR controllers that are provably robust against

prediction errors. Specifically, we show that SODA has the ex-
ponentially decaying perturbation property [49, 55, 56], i.e., the

future impact of prediction errors decay rapidly over time. A

key to our proof methodology is that we shifted from the con-

ventional segment-based ABR formulation and adopted a novel

time-based perspective.

4) Efficient Implementation for ProductionDeployment. ABR
controllers deployed in the field need to work on a wide range

of client devices, including low-end ones with limited computa-

tional resources. Many ABR controllers proposed in the research

literature do not meet the efficiency bar for a production de-

ployment and are never implemented in practice. We maximized

SODA’s runtime and deployment practicality by devising a com-

putationally efficient method to search for near-optimal bitrate

decisions, which reduced the runtime complexity from exponen-

tial to polynomial, e.g., about 200 iterations max in practice. In

addition, we made SODA robust against throughput prediction
errors by design, thus eliminating the need for sophisticated

computationally-intensive throughput predictors.

This work does not raise any ethical issues.

2 DESIGN GAPS, OPPORTUNITIES, AND
REQUIREMENTS

Design Gaps. Live streaming poses the additional constraint of

near real-time delivery which makes bitrate adaptation more chal-

lenging than that in on-demand streaming. Figure 2 shows the

bitrate selection function of BOLA [36, 40, 44], an ABR controller

that is widely deployed by video providers and is part of the refer-

ence MPEG-DASH video player [64]. Notice that for on-demand

614

SODA: An Adaptive Bitrate Controller for Consistent High-Quality Video Streaming ACM SIGCOMM ’24, August 4–8, 2024, Sydney, NSW, Australia

Table 1: A qualitative summary of our key evaluation findings about SODA as compared to baseline ABR controllers.

Controller Theory
a

Video Quality Rebuffering Time Switching Rate Deployability

SODA Q + R + S high short ultra low high

HYB [24] none high medium high high

BOLA [44] Q + R high short high high

Dynamic [36] Q + R high short medium high

MPC [17] none high long low low

Fugu [46] none high medium low low

CausalSimRL [60] none high short high low

a
Q, R, S stand for theoretical guarantees for quality, rebuffering, and switching respectively.

Figure 3: A RobustMPC session where the controller intention-
ally rebuffers instead of lowering the bitrate.

streaming, a longer buffer of 120 seconds ensures that bitrate jumps

are spaced well apart (up to 20 seconds), however, for live streaming

with a buffer of 20 seconds, bitrates fluctuate with small deviations

of 1 - 3 seconds in the buffer size. This can cause bitrates to switch

frequently. While controllers such as MPC [17] and Pensieve [22]
offer respite by explicitly penalizing bitrate switching, these con-

trollers suffer from shortcomings of their own:

• Model predictive controllers are hard to deploy at scale because

they need to solve a non-linear integer programming problem

over a prediction horizon of 𝐾 segments, e.g., 𝐾 = 5, which is so

computationally expensive that it is quicker to download a video

segment than to obtain a bitrate decision [17, 19]. Workarounds

such as pre-computed lookup tables [17] are impractical for live

streaming where the video is not available a priori. In a simi-

lar vein, learning-based controllers such as Pensieve [22] work

optimally when trained specifically for a given set of bitrates,

segment duration, network conditions, etc. Given in-the-wild

diversity and its evolving nature, ensuring this specificity im-

poses a significant operational overhead. Furthermore, even if

specifically trained, achieving performance guarantees with these

learning-based controllers is shown to be challenging [24].

• Existing ABR controllers naively reduce bitrate switching at the

expense of low video quality or more rebuffering. To demonstrate

this, Figure 3 shows a RobustMPC session with the exact setup

used by [17, 22]. Notice that beyond 70 seconds, RobustMPC re-
peatedly rebuffers but continues to download the highest bitrate

(Figure 3 bottom plot), resulting in 29 rebuffering events over 200

seconds. Strikingly, this behavior is in fact the optimal behavior

under RobustMPC’s objective functionwhich tolerates rebuffering
to prevent bitrate switches. On the surface, this suggests higher

rebuffering penalty in the objective function, however, higher

penalties only reduce the duration of these tolerable rebuffers but
do not eliminate them. Indeed, past work has empirically shown

that even a 20× buffering penalty has marginal impact [24].

• Variance in network conditions or throughput prediction errors

are not well tolerated by existing controllers. Past works have

shown that RobustMPC incurs 26%more rebuffering events unless

paired with a sophisticated throughput predictor [46, 50]. Simi-

larly, learning-based controllers like Pensieve tend to degrade

in performance when trained for realistic network conditions

encountered in the wild [24]. In practice, accurate throughput

predictions are hard because of several factors, including (i) de-

vice and OS level inefficiencies [18], (ii) stop-start nature of video

requests which do not interact well with TCP [8, 18], and (iii)

volatile network conditions typical in production networks [1, 5,

45]. To make matters worse, sophisticated throughput predictors

are themselves not necessarily accurate [16] and are challenging

to deploy due to device level bottlenecks [58]. Therefore, in-the-

wild performance of these controllers remains questionable.

Opportunities. Outside of the video streaming literature, the

interaction of learning and control has blossomed in recent years,

leading to new and exciting approaches to controller designs [39,

47, 49, 52, 54]. However, these new approaches have not yet been

applied and evaluated in the context of video streaming where

classical model predictive and proportional–integral–derivative

control have remained the focus, e.g., [17, 23]. In particular, the

area of smoothed online convex optimization (SOCO) has seen

multiple breakthroughs in recent years [13, 25, 33, 35], including

the development of connections to model predictive controllers [26,

47, 49, 52, 56]. SOCO provides a systematic framework to balance

an objective function with action switching. It thus lends itself well

to video streaming, which needs to jointly optimize video quality,

sustained playback, and bitrate smoothness.

Requirements. Driven by the above design gaps and oppor-

tunities, we identify three requirements that SODA should deliver.

In particular, SODA should (i) achieve bitrate smoothness without

615

ACM SIGCOMM ’24, August 4–8, 2024, Sydney, NSW, Australia Chen et al.

sacrificing video quality or sustained playback, (ii) be robust against

volatile network conditions, and (iii) be easy to deploy in practice.

Before delving into the details in the remainder of the paper, we

provide a brief overview of how SODA satisfies these requirements:

• SODA leverages SOCO to balance the trade-off between video qual-

ity, sustained playback without rebuffers, and bitrate smoothness

without frequent switches. Importantly, SODA focuses on steer-

ing the buffer level towards a target rather than weighing video

quality against rebuffering duration (see Section 3.1).

• To achieve robustness against throughput variability, SODA is de-

signed to satisfy the exponentially decaying perturbation property,
which guarantees that SODA never operates too far away from the

optimal trajectory in the face of prediction errors (see Section 4.2).

• To remain computationally efficient, SODA leverages an efficient

approximate solver (see Section A.5 for proof and Algorithm 1

for implementation), that only requires evaluation of monotonic

bitrate sequences (Section 4.3), which reduces the computational

cost by two orders of magnitude over a brute-force solver.

3 SODA OVERVIEW
Given the design gaps, opportunities, and requirements, we set out

to design a theoretically sound adaptive bitrate streaming (ABR)

controller that minimizes bitrate switching without compromis-

ing video quality or increasing rebuffering time, thus providing a

smooth viewing experience. To accomplish this, we deviate from

the conventional segment-based ABR formulation and derive theo-

retical insights from a time-based ABR formulation. This enables us

to incorporate throughput predictions into the controller in a prin-

cipled way. Taking advantage of recent advancements in smoothed

online convex optimization (SOCO), we can theoretically prove

that SODA offers a near-optimal quality of experience (QoE) and is

robust against throughput prediction errors.

3.1 A Time-Based ABR Formulation
Our time-based ABR formulation treats a video stream as a contin-
uous flow rather than a discrete sequence of segments. Consider a

streaming session that consists of 𝑁 time intervals with fixed dura-

tion Δ𝑡 in terms of clock time (not video time). The controller’s task

is to select a bitrate for each time interval from a set of available

bitrates R ⊂ [𝑟min, 𝑟max] to optimize for a combination of high

quality, short rebuffering, and infrequent bitrate switching.

Let 𝜔𝑛 denote the average throughput during the 𝑛th time inter-

val, 𝑟𝑛 the selected bitrate for that time interval, and 𝑥𝑛 the buffer

level immediately after that time interval. Our objective is to min-

imize the overall cost given as a linear combination of the three

QoE components:

𝑁∑︁
𝑛=1

(
𝑣 (𝑟𝑛) ·

𝜔𝑛Δ𝑡

𝑟𝑛
+ 𝛽 · 𝑏 (𝑥𝑛) + 𝛾 · 𝑐 (𝑟𝑛, 𝑟𝑛−1)

)
, (1)

where

• 𝑣 (𝑟𝑛) is the distortion cost, which should be a positive, strictly

decreasing, and convex function that models the encoding distor-

tion, e.g., 𝑣 (𝑟𝑛) = 1/𝑟𝑛 . It is then weighted by the amount of video

downloaded during that time interval, i.e., 𝜔𝑛Δ𝑡/𝑟𝑛 because the

controller downloads a variable amount of video during each

fixed time interval.

Figure 4: A sample throughput function used to illustrate
why our time-based formulation is better for analysis.

• 𝑏 (𝑥𝑛) is the buffer cost, which aims to stabilize the buffer level

around a target level 𝑥 , i.e.,

𝑏 (𝑥𝑛) =
{
(𝑥 − 𝑥𝑛)2 𝑥𝑛 ≤ 𝑥
𝜖 (𝑥𝑛 − 𝑥)2 𝑥𝑛 > 𝑥

,

where 𝜖 < 1 is a small constant. Note that we purposely do not

model the rebuffering time explicitly to avoid the pitfalls encoun-

tered by RobustMPC (Section 2) and as we show later, this helps

SODA achieve theoretical performance guarantees (Section 4.2).

• 𝑐 (𝑟𝑛, 𝑟𝑛−1) is the switching cost from the previous bitrate to the

current bitrate, e.g., 𝑐 (𝑟𝑛, 𝑟𝑛−1) = (𝑣 (𝑟𝑛) − 𝑣 (𝑟𝑛−1))2.
Coefficients 𝛽 and 𝛾 are positive weights for the buffer and the

switching cost respectively based on user preferences. The choices

for the distortion and switching cost functions are flexible.

The time-based buffer dynamics are introduced into the opti-

mization problem through the following constraint:

𝑥𝑛 = 𝑥𝑛−1 +
𝜔𝑛Δ𝑡

𝑟𝑛
− Δ𝑡 ∈ [0, 𝑥max],

where 𝜔𝑛Δ𝑡/𝑟𝑛 accounts for the variable amount of video down-

loaded during a time interval and Δ𝑡 accounts for the fixed amount

of buffer drained during the same time interval. Note that we do not

allow the controller to violate the buffer range constraint during

the optimization phase when determining the bitrate. Of course, due

to throughput prediction errors, this may sometimes be inevitable

during the execution phase when applying the bitrate decision.

Why a Time-Based Formulation? The time-based formulation

allows a cleaner theoretical analysis over a given throughput se-

quence (𝜔1, . . . , 𝜔𝑁). For example, consider the throughput function

shown in Figure 4. In the time-based formulation, we naturally have

𝜔1 = 4, 𝜔2 = 1, and 𝜔3 = 𝜔4 = 2 Mb/s given Δ𝑡 = 1 s. By contrast,

in the segment-based formulation, the throughput sequence be-

comes dependent on the bitrate sequence. Assuming the segment

duration is also 𝐿 = 1 s, if the controller chooses 𝑟1 = 2 Mb/s and
𝑟2 = 2.5 Mb/s, then it takes 0.5 and 1 s to download the first and sec-

ond segments respectively, resulting in 𝜔1 = 4 and 𝜔2 = 2.5 Mb/s.
As such, the segment based formulation gets causally biased due

to bitrate selection 𝑟1, ..., 𝑟𝑁 , which in turn makes it difficult to

theoretically analyze the design [61].

Why Not Model Rebuffering Directly? Rebuffering is important to

minimize from a user’s perspective [7, 9]. However, in our optimiza-

tion problem formulation, we did not explicitly model rebuffering

like prior works [17, 46, 50]. Instead, we focus on stabilizing the

buffer level around a target level with a smooth roll-off on both

sides for the following reasons:

616

SODA: An Adaptive Bitrate Controller for Consistent High-Quality Video Streaming ACM SIGCOMM ’24, August 4–8, 2024, Sydney, NSW, Australia

• Minimizing rebuffering directly is not theoretically tractable be-

cause it requires a binary penalty function that yields a non-zero

penalty exactly when the buffer is empty. Instead, we employ

a smoother penalty function that increases in magnitude when

the buffer level falls below a desired target level. When there

is a network issue, we start to penalize early when the buffer

level decreases below the safe target level and we provide the

largest penalty when the buffer level is empty. Using a smooth

penalty function enables us to guarantee that SODA’s optimiza-

tion is strongly convex, which is key to our theoretical work. Our

approach is analogous to the use of control barrier functions to

ensure safety properties in control systems [30].

• Modeling rebuffering time directly makes the controller vulnera-

ble to throughput prediction errors. Under a direct rebuffering

objective, as long as the buffer level is above zero, there will be no

penalty for the controller, even if the buffer level is dangerously

close to 0. As a result, even small throughput prediction errors

can lead to unexpected rebuffering.

3.2 Incorporating Throughput Predictions
In addition to facilitating theoretical analysis, our time-based formu-

lation is crucial to ensuring the validity of throughput predictions

over the prediction horizon. An important observation is that bi-
trate decisions have no causal impact on how long the throughput
predictions are valid for. However, segment-based controllers such

as MPC [17] and Fugu [46] intertwine throughput predictions and bi-
trate decisions in non-causal ways. In these designs, the throughput

prediction horizon spans shorter periods of clock time when low

bitrate is selected compared to when high bitrate is selected. In fact,

their underlying assumption about the validity of the throughput

prediction horizon can vary by 𝑟max/𝑟min.

By contrast, the way we incorporate throughput predictions into

SODA does not suffer from this issue. Specifically, just before each

time interval, the controller is given access to a (not necessarily

accurate) throughput prediction for the next 𝐾 time intervals from

a black-box throughput predictor. It is always assumed that the

validity of the throughput prediction is 𝐾Δ𝑡 , a fixed value. In gen-

eral, a throughput predictor may output a different value for each

of the next 𝐾 time intervals, i.e., 𝜔̂𝑛 |𝑛−1
, 𝜔̂𝑛+1 |𝑛−1

, . . . , 𝜔̂𝑛+𝐾−1 |𝑛−1
,

where 𝜔̂𝑚 |𝑛−1
(𝑚 ≥ 𝑛) is the throughput prediction for the 𝑚th

time interval given previous download information up until the

(𝑛 − 1)th time interval. In other words, a throughput predictor can

output a piecewise constant throughput function for the next 𝐾Δ𝑡
time. In practice, though, a typical throughput predictor outputs a

single value that corresponds to a constant throughput function.

3.3 Control Mechanism
Inspired by the model predictive control framework, SODA selects a

bitrate for each time interval by optimizing over the next 𝐾 time

intervals and then committing to the bitrate decision for the imme-

diate next time interval, i.e., minimizing

𝑛+𝐾−1∑︁
𝑚=𝑛

(
𝑣 (𝑟𝑚) ·

𝜔̂𝑚 |𝑛−1
Δ𝑡

𝑟𝑚
+ 𝛽 · 𝑏 (𝑥𝑚) + 𝛾 · 𝑐 (𝑟𝑚, 𝑟𝑚−1)

)
(2a)

Figure 5: SODA’s bitrate decision as a function of buffer level
and predicted throughput. Dark blue to light orange repre-
sent low to high bitrate decisions. Notice that SODA becomes
more aggressive in selecting higher bitrates as the buffer
grows. The rightmost region is blank since SODA makes no
downloads to prevent a buffer overflow.

subject to 𝑥𝑚 = 𝑥𝑚−1 +
𝜔̂𝑚 |𝑛−1

Δ𝑡

𝑟𝑚
− Δ𝑡, (2b)

𝑥𝑚 ∈ [0, 𝑥max], 𝑟𝑚 ∈ R, (2c)

with respect to variables 𝑟𝑛, . . . , 𝑟𝑛+𝐾−1 and then committing to

only the first bitrate decision 𝑟𝑛 . The behavior of SODA is visualized
as a bitrate decision diagram in Figure 5 to provide readers with

intuition about how SODA selects bitrates in practice.

As discussed in Section 2, solving this optimization problem is

computationally expensive, furthermore, it is unclear what predic-

tion horizon should be used and how accurate throughput predic-

tions must be in order for SODA to perform well. We first analyze

these questions theoretically (Section 4) and then present a practical

implementation of SODA that answers these concerns (Section 5).

4 THEORETICAL DESIGN INSIGHTS
Our design of SODA is motivated by recent theoretical advances at

the interface of learning and control [28, 38, 49, 54] and smoothed

online convex optimization [25, 33, 55]. In particular, we design

SODA to satisfy an exponentially decaying perturbation property that

has been shown to ensure efficient and robust use of predictions in

model predictive control policies [49, 56]. Intuitively, this property

describes the behavior of the solution to the optimization problem

defining SODA (Equation 2) as a function of problem parameters,

including bandwidth predictions {𝜔̂𝑚 |𝑛−1
}𝑛≤𝑚<𝑛+𝐾 and the previ-

ous buffer level/action pair (𝑥𝑛−1, 𝑢𝑛−1). Here, we define the actions
as the inverse of the bitrates (i.e., 𝑢𝜏 = 1/𝑟𝜏 for all time step 𝜏) and

do a change of the variables to make the dynamics linear for the

theoretical analysis. Under this property, when {𝜔̂𝑚 |𝑛−1
}𝑛≤𝑚<𝑛+𝐾

are fixed, the optimal trajectory of (Equation 2) under the initial

617

ACM SIGCOMM ’24, August 4–8, 2024, Sydney, NSW, Australia Chen et al.

(𝑥𝑛−1, 𝑢𝑛−1) (𝑥𝑛, 𝑢𝑛) (𝑥𝑛+1, 𝑢𝑛+1)

(𝑥 ′
𝑛−1

, 𝑢′
𝑛−1
)
(𝑥 ′𝑛, 𝑢′𝑛) (𝑥 ′

𝑛+1, 𝑢
′
𝑛+1)

Figure 6: Illustration of the exponentially decaying perturba-
tion property: When {𝜔̂𝑚 |𝑛−1

}𝑛≤𝑚<𝑛+𝐾 are fixed, the optimal
trajectories of Equation 2 under different initial buffer/action
pairs converge exponentially toward each other.

buffer/action pair (𝑥 ′
𝑛−1

, 𝑢′
𝑛−1
) converges exponentially toward the

optimal trajectory under the pair (𝑥𝑛−1, 𝑢𝑛−1) (see Figure 6 for

an illustration). On the other hand, when the initial buffer/action

pair is fixed, the impact of perturbing a prediction 𝜔̂𝑚 |𝑛−1
on the

first action 𝑢𝑛 decays exponentially with respect to their temporal

distance (𝑚 − 𝑛). The formal definition of exponentially decaying

perturbation generalizes the intuition above to consider the impact

of perturbing any parameters on the entire optimal trajectory (see

Definition A.1 in Appendix A).

Two metrics that we use to measure SODA’s performance theoret-

ically are dynamic regret and competitive ratio, which are standard

in the literature of online optimization [25, 28, 33, 49, 54]. Specif-

ically, let cost(ALG) denote the total cost incurred by an online

algorithm ALG and cost(OPT) denote the offline optimal cost (Equa-

tion 1) an agent can incur if it has exact knowledge of all future

bandwidth at the beginning. We say ALG achieves a dynamic regret

of 𝑅 if cost(ALG) − cost(OPT) ≤ 𝑅 always holds, and ALG achieves a

competitive ratio of 𝐶 if cost(ALG) ≤ 𝐶 · cost(OPT) always holds.
The key idea underlying our theoretical analysis is to leverage the

exponential decay property to bound (i) the error that SODA incurs

at every intermediate time step 𝑛 due to its limited prediction power

(𝜔̂𝑚 |𝑛−1
≠ 𝜔𝑚 ,𝐾 ≪ 𝑁), and (ii) the aggregation of such errors over

the whole horizon 𝑁 . Specifically, we define the notion of per-step
error at a time step 𝑛 as the distance between SODA’s buffer/action

pair and the optimal buffer/action pair that one could reach with

exact predictions of all future bandwidths 𝜔𝑛, 𝜔𝑛+1, . . . , 𝜔𝑁 given

the previous buffer/action pair (𝑥𝑛−1, 𝑢𝑛−1) (Definition A.2). Using

the principle of optimality, we reformulate the optimal buffer/action

pair as an entry of the optimal trajectory from time 𝑛 to (𝑛 +𝐾 − 1)
so that we can directly compare it with SODA’s buffer/action pair

under the exponentially decaying perturbation. Thus, we establish a

bound on the per-step error that depends on the errors of predicting

future bandwidths and the prediction horizon 𝐾 (Lemma A.4). On

the other hand, we also show that the aggregation of per-step

errors does not grow linearly in time because the exponentially

decaying perturbation guarantees that the impact of each previous

per-step error vanishes exponentially over time (Lemma A.5). We

present a proof outline and the detailed proofs in Appendix A.

To prove the exponentially decaying perturbation, we require a

technical assumption that guarantees the controller can “reach”

any desired buffer level by choosing the largest/smallest bitrate

(see Assumption A.1 in Appendix A for the formal statement). This

assumption is used to eliminate extreme boundary cases in the

analysis, but we find SODA empirically performs very well even

when this assumption is not strictly satisfied.

In this section, we set Δ𝑡 = 1, R = [𝑟min, 𝑟max], and 𝑣 (𝑟) =
1/𝑟 . Our results can apply to other distortion cost functions, e.g.,

𝑣 (𝑟) = log(𝑟max/𝑟), as long as certain regularity conditions hold;

see Appendix B for a discussion.

4.1 Exact Predictions
When the bandwidth predictions are accurate, a small prediction

horizon is sufficient for SODA to achieve near-optimal performance.

In practice, it is desirable to use a relatively small prediction hori-

zon for a predictive controller like SODA because prediction errors

grow dramatically as we predict further into the future. Fortunately,

the exponential decay property that ensures good performance

with only a few predictions. More formally, we present a theorem

showing that a small prediction horizon is sufficient for SODA to

achieve near-optimal performance when the predictions within this

window are accurate (i.e., 𝜔̂𝑚 |𝑛−1
= 𝜔𝑚 for𝑚 = 𝑛, . . . , 𝑛 + 𝐾 − 1).

Theorem 4.1. [Informal]When the predictions of the bandwidth in
future 𝐾 steps are exact (i.e., 𝜔̂𝑚 |𝑛−1

= 𝜔𝑚 for𝑚 = 𝑛, . . . , 𝑛 +𝐾 − 1)
and the prediction horizon 𝐾 ≥ 𝑂 (1), SODA achieves a dynamic
regret of𝑂 (𝜌𝐾𝑁) and a competitive ratio of 1 +𝑂 (𝜌𝐾), where 𝜌 < 1

is the decay factor of the exponentially decaying perturbation property.

The formal statement of Theorem 4.1 is given in Theorem A.3

in Appendix A. This result implies that SODA’s performance ap-

proaches that of the optimal sequence of decisions exponentially
fast in the prediction horizon size 𝐾 ; thus, only a small prediction

horizon length is necessary to obtain good performance.

4.2 Inexact Predictions
We now relax the exact prediction assumption to prove SODA’s
robustness to a certain level of prediction errors thanks to its expo-

nentially decaying perturbation property.

Theorem 4.2. [Informal] Suppose the prediction error at each
step is bounded above. The buffer level of SODA will never hit the
constraint boundary, i.e., 0 < 𝑥𝑛 < 𝑥max. Further, define E = 𝜌2𝐾𝑁 +∑𝐾
𝜅=1

𝜌𝜅𝐸𝜅 , where 𝐸𝜅 is the total squared error for predicting 𝜅 steps
into the future. SODA achieves a dynamic regret of 𝑂 (

√
E𝑁 + E).

The formal statement of Theorem 4.2 is given in Theorem A.8 in

Appendix A. Theorem 4.2 shows that, if the buffer costs are “steep”

and the prediction errors on the bandwidth are relatively small,

SODA can achieve a sequence of buffer levels that stay safely away

from the boundaries of buffer constraint [0, 𝑥max]. The dynamic

regret of SODA depends on the magnitude of the prediction errors

and the regret improves when the errors become smaller. SODA
acquires this guarantee thanks to its maintenance of the buffer

near a target level 𝑥 . In contrast, RobustMPC [17] doesn’t offer the
same performance guarantee, thus even small bandwidth prediction

errors can cause the video to rebuffer if the buffer level is near zero.

4.3 Computational Efficiency
Solving the predictive optimization problem to determine the exact

optimal solution can be unrealistic in the application of adaptive

bitrate streaming, where each decision needs to be made in the

618

SODA: An Adaptive Bitrate Controller for Consistent High-Quality Video Streaming ACM SIGCOMM ’24, August 4–8, 2024, Sydney, NSW, Australia

minimum possible time. A critical observation underlying the im-

plementation of SODA is that it is sufficient to search only for bitrate

sequences that are increasing or decreasing monotonically. We

provide a theoretical justification in the following theorem.

Theorem 4.3. [Informal] Suppose SODA is given the predictions
that satisfy 𝜔̂𝑛 |𝑛−1

= · · · = 𝜔̂𝑛+𝐾−1 |𝑛−1
at an intermediate time step

𝑛. Then, the bitrate trajectory solved by SODA can be approximated
by a feasible monotonic bitrate trajectory with an error of 𝑂

(
𝐾/√𝛾

)
.

The formal statement of Theorem 4.3 is given in Theorem A.9

in Appendix A. Theorem 4.3 shows that the true optimal solution

becomes closer to monotonic as the weight 𝛾 of switching costs

increases. While the theoretical bound can be conservative, we find

that even with moderate 𝛾 , the (discrete) decision made under the

monotonic heuristic is usually identical to the true optimal solution

on a real trajectory (see Figure 8).

5 IMPLEMENTATION DETAILS
Given the theoretical design insights, we now discuss the practical

implementation of the high-level design described in Section 3.

There are three practical concerns that require discussion: (i) how

to translate the time-based design to the segment-based schema;

(ii) how to incorporate throughput predictions robustly; and (iii)

how to solve the predictive optimization problem efficiently.

5.1 Segment-Based Schema
SODA is intrinsically a time-based controller, but in practice, a video

must be downloaded segment by segment according to the MPEG-

DASH standard. To reconcile with this requirement, we keep the

optimization phase as is in the time-based format and empirically

set Δ𝑡 to be equal to the segment length. This choice is justified

by the fact that in the steady state, the download time of a video

segment is expected to be close to the segment length or much less

than that [29]. To further minimize the likelihood of committing

to a bitrate for significantly longer than Δ𝑡 , we introduce another
heuristic that the controller must select a bitrate no higher than

min{𝑟 ∈ R : 𝑟 ≥ 𝜔̂}.

5.2 Incorporating Predictions Robustly
According to Section 4.2, SODA is robust against prediction errors

by design as long as there is no systematic bias in prediction er-

rors. Given the diverse network conditions in the wild, we prefer

simple throughput predictors which makes SODA highly deployable

since there is no dependence on complex throughput predictors.

In practice, we observe that prediction accuracy degrades as the

prediction horizon increases (see Figure 7). Therefore, we limit the

prediction horizon length to at most 10 s. This is also supported by

our finding in Section 4.1 that a longer prediction horizon yields

diminishing returns.

5.3 Efficient Approximate Solver
At SODA’s core is the predictive optimization problem described

in Section 3.3. Unfortunately, solving this problem on the fly is

computationally challenging. One may propose enumerating all

combinations of discretized throughputs, buffer levels, and previous

bitrates in the form of an offline computed lookup table, as is the

Figure 7: We profiled the performance of the two throughput
predictors shipped with dash.js [64], i.e., moving average
predictor and exponential moving average predictor. Both
predictors have a high mean correlation (around 50%) in the
immediate future but a very low mean correlation (around
15%) in the far future.

Algorithm 1: SODA’s efficient approximate optimization

solver. SearchDown is omitted for brevity due to symmetry.

The current buffer level and the previous bitrate are denoted

by 𝑥0 and 𝑟0 respectively.

function Search(𝜔̂, 𝑥0, 𝑟0, 𝐾)

(𝑟∗
up
, obj∗

up
) ← SearchUp(𝜔̂, 𝑥0, 𝑟0, 𝐾)

(𝑟∗
down

, obj∗
down
) ← SearchDown(𝜔̂, 𝑥0, 𝑟0, 𝐾)

return 𝑟∗up ≠ null ∧ obj∗up < obj∗down ? 𝑟
∗
up : 𝑟

∗
down

function SearchUp(𝜔̂, 𝑥0, 𝑟0, 𝐾)

𝑟∗
1
← null, obj∗ ←∞

foreach 𝑟1 ∈ {𝑟 ∈ R : 𝑟 > 𝑟0}
𝑥1 ← 𝑥0 + 𝜔̂Δ𝑡/𝑟1 − Δ𝑡
if 𝑥1 < 0 then continue
obj← 𝑣 (𝑟1) · 𝜔̂Δ𝑡/𝑟1 + 𝛽 · 𝑏 (𝑥1) + 𝛾 · 𝑐 (𝑟1, 𝑟0)
if 𝐾 > 1 then
(𝑟∗

2
,Δobj∗) ← SearchUp(𝜔̂, 𝑥1, 𝑟1, 𝐾 − 1)

if 𝑟∗
2
= null then continue

obj← obj + Δobj∗
if obj < obj∗ then 𝑟∗

1
← 𝑟1, obj

∗ ← obj

return (𝑟∗
1
, obj∗)

case in FastMPC [17], however, this is neither flexible nor scalable
in practice. A lookup table is specific to a particular set of bitrates,

maximum player buffer, segment durations and byte sizes etc. thus
needs to be recomputed when any of these quantities change. Fur-

thermore, computing this lookup in live streaming is undesirable

due to the additional computational and latency overhead it incurs.

Instead, we opt for an efficient approximate solver.

SODA’s approximate solver is designed to take advantage of the

structure of the optimal solution presented in Section 4.3. Instead of

searching through all possible bitrate sequences in the prediction

horizon, the approximate solver only considers monotonic bitrate
sequences, i.e., it imposes an additional constraint that 𝑟𝑛−1 ≤ 𝑟𝑛 ≤
. . . ≤ 𝑟𝑛+𝐾−1 or 𝑟𝑛−1 ≥ 𝑟𝑛 ≥ . . . ≥ 𝑟𝑛+𝐾−1. The pseudocode for a

recursive implementation is shown in Algorithm 1.

619

ACM SIGCOMM ’24, August 4–8, 2024, Sydney, NSW, Australia Chen et al.

Figure 8: The probability that the bitrate decision produced
by the approximate solver is different from that produced
by the brute-force solver quickly converges to 0 as switching
cost weight increases.

The approximate solver reduces the time complexity fromO(|R|𝐾)
(exponential in 𝐾) in the case of a brute-force search over all possi-

ble bitrate sequences in the prediction horizon down to O
((| R |+𝐾

𝐾

))
(polynomial in 𝐾) and has a space complexity of O(𝐾) only. The
time complexity can be further reduced by limiting extreme bitrate

switches. In practice, SODA searches through at most around 200

bitrate sequences. According to our production deployment expe-

rience, the approximate solver did not impose a runtime burden

even on low-end devices such as set-top boxes, which shows that

SODA is highly practical.

Empirical results are shown in Figure 8 to validate the near-

optimality of bitrate decisions produced by the approximate solver.

For each algorithm configuration, we uniformly sample a million

situations with different throughputs, buffer levels, and previous

bitrates. Then, we count the probability that the bitrate decision

produced by the approximate solver is different from that produced

by the brute-force solver. The difference is negligible for a reason-

able switching cost weight, e.g., below 5% for 𝐾 = 4 and a relative

switching cost weight of 2. Throughout the evaluation sections, we

use this efficient implementation of SODA.

6 EVALUATION
To thoroughly evaluate SODA’s performance, we conducted three

levels of empirical evaluation: (i) large-scale numerical simulations,

(ii) prototype evaluation in Puffer [46], and (iii) production deploy-

ment in Amazon Prime Video. This funnel approach allowed us to

first systematically evaluate SODA against a variety of baselines in

a wide range of controlled environments. Later, we narrowed the

comparison target to a deployed and fine-tuned ABR controller in

production using A/B tests on real user sessions.

Performance Metrics. To maintain consistency in terms of perfor-

mance metrics with prior works such as [17, 22, 24, 46], a similar

definition of QoE is adopted that consists of mean utility, rebuffer-

ing ratio, and switching rate. These correspond to the three main

desired properties of adaptive bitrate streaming, i.e., high video

quality, shorter rebuffering time, and less bitrate switching. All

three QoE components are normalized between 0 and 1 for ease of

interpretation. The precise definitions are as follows:

• Mean Utility: Unless otherwise noted, we use the commonly-

used logarithmic utility function:

𝑣 =
1

𝑁

𝑁∑︁
𝑖=1

log(𝑟𝑖/𝑟min)
log(𝑟max/𝑟min)

.

• Rebuffering Ratio: The ratio of the total rebuffering time to the

session duration, i.e., 𝜌
rebuf

= 𝑇
rebuf
/𝑇 .

• Switching Rate: Bitrate switch count divided by segment count

minus one, i.e., 𝑝
switch

= 𝑁
switch

/(𝑁 − 1).
The QoE score is simply a linear combination of the three QoE

components, i.e., QoE = 𝑣 − 𝛽 · 𝜌
rebuf

− 𝛾 · 𝑝
switch

. In this work,

we chose 𝛽 = 10 and 𝛾 = 1 to reflect the high importance of

minimizing rebuffering time. To establish fair comparisons, we

report the individual QoE components along with the QoE score.

6.1 Numerical Simulations
To perform large-scale numerical simulations, we implemented a

highly optimized ABR simulator in C++ derived from Sabre [36].
The simulation accuracy of Sabre has been empirically validated

against dash.js [64], the reference player for MPEG-DASH. We

configured the simulator to allow a maximum buffer length of 20

seconds to replicate the typical live streaming conditions.

6.1.1 Experimental Setup. Our network dataset consists of about

38,000 hours of throughput traces compiled from the following

three public sources:

• Puffer Dataset [46]: We downloaded and parsed all throughput

traces from the Puffer platform during the time period of January

2023 to June 2023.

• 5G Dataset [41]: A 5G network dataset from a major Irish mobile

operator under both static and moving scenarios while down-

loading online content.

• 4G Dataset [27]: A 4G network dataset from two major Irish

mobile operators under both static and moving scenarios while

downloading online content.

For all three datasets, we filtered out sessions shorter than 10 min-

utes and divided long sessions into consecutive 10-minute sessions,

resulting in 230,322 sessions from the Puffer dataset, 88 sessions

from the 5G dataset, and 187 sessions from the 4G dataset. Fig-

ure 9 illustrates the wide range of network conditions covered by

these datasets. In general, the Puffer dataset represents better net-

work conditions than the 5G and 4G datasets. The latter have much

lower mean throughput and higher variance, thus posing a bigger

challenge for ABR controllers.

To fully exercise our datasets, we considered a high-frame-rate

4K video encoded according to the YouTube recommended settings

(1.5, 4, 7.5, 12, 24, and 60 Mb/s) [65] with a segment length of 2

seconds. For the 5G and 4G datasets, we considered the same video

with the two highest bitrates removed. Finally, for throughput

prediction, we opted for the exponential moving average (EMA)
predictor, the default throughput predictor in dash.js.

6.1.2 Baseline ABR Controllers. We compared SODA against the

following ABR controllers representative of each of the common

ABR controller categories, i.e., throughput-based, buffer-based, and

hybrid. They were tuned to our best efforts for our network datasets.

620

SODA: An Adaptive Bitrate Controller for Consistent High-Quality Video Streaming ACM SIGCOMM ’24, August 4–8, 2024, Sydney, NSW, Australia

Figure 9: The mean throughput of the Puffer, 5G, and 4G datasets are 57.1, 31.3, and 13.0 Mb/s. The mean relative standard
deviations of throughput of the Puffer, 5G, and 4G dataset are 47.2%, 133%, and 80.6%.

• HYB [24]: A heuristic throughput-based ABR controller that se-

lects the highest bitrate without rebuffering.

• BOLA [36]: A buffer-based ABR controller derived from Lyapunov

optimization. It provides theoretical guarantees about utility and

rebuffering time only.

• Dynamic [44]: A production version of BOLA that dynamically

switches between buffer mode and throughput mode in response

to changes in network conditions. Additionally, it has low-buffer

safety heuristic to reduce rebuffering and a switching avoidance

heuristic to mitigate bitrate switching. It is the default ABR con-

troller in dash.js.
• MPC [17]: One application of model predictive control to adap-

tive streaming that models utility, rebuffering time, and bitrate

switching, without theoretical guarantees.

6.1.3 QoE Performance. The aggregate statistics for QoE scores

and individual QoE components under each network dataset are

shown in Figure 10. To better understand how the performance of

different ABR controllers react to the intrinsic volatility of network

conditions, we split the Puffer dataset into four quarters according

to the relative standard deviation of throughput (Q1 represents

the most stable network conditions, while Q4 represents the most

volatile network conditions). In general, the more volatile network

conditions are, the more the QoE performance of any ABR con-

troller degrades, as evidenced by the trend in Figure 10 from left

to right. Nonetheless, SODA consistently outperforms baseline ABR

controllers under all network conditions. The improvement in terms

of mean QoE scores compared to the best baseline across different

network datasets ranges from 9.55% to 27.8%, which mainly stems

from improvement in terms of smoothness (shorter rebuffering

time and less bitrate switching). We discuss the improvement of

SODA over each baseline ABR controller below:

• SODA vs HYB. HYB is not as robust as SODA under volatile network

conditions. In addition, it switches up to 215% more since it does

not consider bitrate switching.

• SODA vs BOLA & Dynamic. As mainly buffer-based ABR con-

trollers, BOLA and Dynamic are fairly robust against volatile net-

work conditions. Dynamic’s performance is what one would ex-

pect in a typical production environment. Nonetheless, SODA is
able to achieve similar mean utilities without sacrificing mean

rebuffering ratios, proving its outstanding robustness as a hybrid

ABR controller. Where SODA really shines though is its signifi-

cantly lower mean switching rates. Despite Dynamic’s switch-
ing avoidance heuristic, SODA cuts down mean switching rates

by as much as 70.4%, which demonstrates the superiority of

theoretically-sound design.

• SODA vs MPC. MPC has high mean utilities and low mean switching

rates under stable network conditions (see Puffer (Q1 variance)

in Figure 10). However, the performance of MPC is tightly coupled
with the intrinsic volatility of network conditions. Specifically,

MPC suffers a lot in terms of mean rebuffering ratios especially

under mobile network conditions. By contrast, SODA does not

have this issue since it is robust against prediction errors by

design, making it much more suitable for production deployment.

6.1.4 Intrinsic Sensitivity to Prediction Accuracy. In an effort to im-

prove throughput prediction accuracy, several prior works have fo-

cused on designing more sophisticated throughput predictors such

as C2SP [20], Fugu [46], and Xatu [50]. While these throughput pre-

dictors may offer higher prediction accuracy, they are complex and

difficult to deploy, especially on compute or memory constrained

devices [58]. In Section 4.2, we have showed that SODA is robust

against prediction errors by design and does not require a sophisti-

cated throughput predictor. We now demonstrate this empirically.

First, we replaced the throughput predictor used in simulations

with a perfect short-term throughput predictor. Next, we gradually

introduced more and more white noise to the perfect throughput

predictions and observed how different ABR controllers behave

accordingly. This experiment was conducted on a random subset

of our network datasets with a size of 10,000 sessions. Note that

throughput prediction discounts were turned off for all ABR con-

trollers to reveal their intrinsic robustness.1

The results are shown in Figure 11, from which we observe

that all hybrid ABR controllers that take throughput predictions

into account will inevitably be affected by prediction errors to

some extent (BOLA is not affected since it is purely buffer-based).

Nonetheless, SODA still consistently outperforms all baseline ABR

controllers up to a noise level of 50%. For reference, EMA predictor
has an empirical noise level of about 30% on the same sessions. More

importantly, the QoE degradation of SODA is minimal up to the

reference point of EMA predictor, i.e., about 10%, which reinforces

1
The ranking between different ABR controllers in this section may be different from

that in Figure 10, which reveals that the robustness of certain ABR controllers should

be attribute to throughput prediction discounts instead of intrinsic designs.

621

ACM SIGCOMM ’24, August 4–8, 2024, Sydney, NSW, Australia Chen et al.

Figure 10: The mean QoE scores, utilities, rebuffering ratios and switching rates of SODA and baseline ABR controllers under
each network dataset. The Puffer dataset is split into four quarters according the throughput variance (Q1 being lowest while
Q4 being highest). SODA has consistently higher mean QoE scores and lower switching rates than all baseline ABR controllers
under all network conditions. (Error bars represent 95% confidence intervals.)

Figure 11: The mean QoE scores for SODA and baseline ABR
controllers under variable amounts of white noise. (The error
bars represent 95% confidence intervals.)

the idea that a practical deployment of SODA does not require a

sophisticated throughput predictor.
2

2
In practice, we observe that EMA predictor is actually much better than a perfect

short-term predictor with 30% white noise because the noise patterns are different,

which means that real gap is less than 10%.

6.2 Prototype Evaluation
We next present emulation results from our local client-server

deploymentwherewe implemented SODA in the Puffer platform [46].

Thanks to Chrome DevTools’ new capability to throttle WebSocket

requests [59], we could replay our network datasets directly in

Chrome usingWebDriver [63]. The results are intended to highlight

the robustness of different ABR controllers under actual browser-

based playback. For these experiments, we allowed a maximum

buffer length of 15 seconds, as set by Puffer.

6.2.1 Experimental Setup. The video source was a news clip en-

coded in five different resolutions (426 × 240, 640 × 360, 854 × 480,

1280 × 720, and 1920 × 1080) with a constant rate factor of 26 and

a segment length of 2 seconds. To be fair to those learning-based

ABR controllers trained specifically for the Puffer platform, we only

considered the Puffer dataset. Since the average bitrate of the high-

est resolution is only about 2 Mb/s, we take a random subset of the

Puffer dataset with a size of 1,000 sessions whose mean throughput

is below 2 Mb/s to create challenging scenarios.

622

SODA: An Adaptive Bitrate Controller for Consistent High-Quality Video Streaming ACM SIGCOMM ’24, August 4–8, 2024, Sydney, NSW, Australia

6.2.2 Baseline ABR Controllers. In response to the growing interest
in learning-based throughput predictors and ABR controllers in

the research community, we included two representative learning-

based ABR controllers for local deployment on top of the major

baseline ABR controllers from numerical simulations:

• Fugu [46]: Developed as part of the Puffer project, it features a

learning-based stochastic throughput predictor, while its under-

lying control algorithm is similar to MPC.
• CausalSimRL [60]: A modern implementation of a reinforcement

learning (RL)-based ABR controller Pensieve [22]. It is trained
using CausalSim for the Puffer platform.

6.2.3 QoE Performance. Puffer employs structure similarity index

measures (SSIM) [4] to quantify utility, thus to compare fairly us-

ing Puffer, we adapt mean utility to normalized mean SSIM, i.e.,

𝑣 = SSIM/SSIMmax. The definitions of rebuffering ratio, switching

rate, and QoE score remain the same. The aggregate statistics or

QoE scores and individual QoE components across all sessions are

shown in Figure 12. SODA outperforms the best baseline (Fugu) by
30.4% in terms of mean QoE score. More importantly, SODA is the
only ABR controller that achieves low mean rebuffering ratio and

switching rate simultaneously, which translates to superior smooth-

ness of adaptive streaming. We highlight comparisons with the new

baseline ABR controllers below:

• SODA vs MPC & Fugu. MPC and Fugu are grouped together since,

apart from the more sophisticated stochastic throughput pre-

dictor, Fugu shares a similar underlying control algorithm with

MPC. While they both achieve slightly higher mean utilities than

SODA and reasonably low mean switching rates, these benefits

are overshadowed by worse mean rebuffering ratios (230% and

104% worse respectively). Although Fugu partially mitigates the

rebuffering issue due to its stochastic throughput predictor, it is

still not robust enough for challenging network conditions.

• SODA vs CausalSimRL. CausalSimRL achieves slightly higher

mean utility than SODA and a reasonably low mean rebuffering

ratio. However, it switches bitrates 86.3% more often than SODA.
Due to the black-box nature of RL-based ABR controllers, it is

hard to reason why this is the case. In addition, there exists no

straightforward way to tune an RL-based controller in favor of

one particular QoE component without a complete retraining. In

a production environment, it is highly desirable that the trade-off

between different QoE components is tunable.

6.3 Production Deployment
We now describe the results from deploying SODA for live streams

delivered on Amazon Prime Video. The bitrate ladder for these

video streams had the following bitrate rungs {0.2, 0.45, 0.8, 1.2, 1.8,

2, 4, 5, 6.5, 8.0} Mb/s. This range of available bitrates fully exercised

SODA’s bitrate adaptation capability as well as tested its runtime

feasibility on actual devices. The experiment was run on three de-

vice families, including (i) desktops/laptops (HTML5 browsers), (ii)

smart TVs, and (iii) set-top boxes. On all three platforms, SODA used
a simple sliding window-based throughput predictor. All devices

were 20 seconds behind live action, so they could accumulate at

most 20 seconds of buffer. To compare performance with a pro-

duction tuned baseline, we conducted large-scale A/B experiments

where customers were randomly assigned SODA or the production
baseline controller. The experiment ran for more than 1 week with

live streams delivered to more than 10 countries. In total, SODA
sessions logged more than 50,000 streaming hours.

Figure 13 shows SODA’s performance relative to the production

deployed and tuned controller. First, notice that SODA consistently

improves all the metrics across all device families, reducing the

frequency of bitrate switching on set-top boxes by 88.8%. SODA really
shines on HTML5 browsers where it reduced the mean rebuffering

ratio by up to 53.0% in addition to 81.8% reduction in switching.

This is because HTML5 browsers experience more volatility in

network conditions compared to smart TVs and set-top boxes and

thus present greater opportunity for improvement. Finally, notice

that on all three platforms, the average duration of session increased,

with 5.91% improvement on set-top boxes. Live streaming sessions

for sports events routinely span multiple hours (e.g., 2-hour soccer

broadcast, 3.5-hour cricket broadcast), so a 5.91% increase translates

to more than 5 minutes duration.

Takeaways from Production Deployment. The production
deployment shows that SODA is practical and can bewidely deployed
across different device types and network connections. Furthermore,

to achieve its significant performance gains, it is sufficient for SODA
to use simple sliding window-based throughput predictors.

7 RELATEDWORK
7.1 Adaptive Bitrate Streaming
Bitrate adaptation has received significant attention from the mul-

timedia research community. Buffer-based controllers like BBA [15]

and BOLA [36, 44] make bitrate decisions based on buffer occu-

pancy, while hybrid controllers like HYB [24], MPC [17] and DYNAMIC
[44] combine throughput predictions with buffer occupancy to

make decisions. SODA belongs to the latter category. There are also

learning-based controllers such as Pensive [22] that utilize rein-

forcement learning to learn a bitrate selection strategy. Another

relevant stream of work focuses on improving the accuracy of

throughput predictions, including CS2P [20], Fugu [46], and Xatu
[50]. Our work makes no assumption on the quality of throughput

predictions and does not require a sophisticated throughput pre-

dictor. Past works have also considered upgrading the downloaded

segments through replacement [36] which we do not consider in

this paper.

7.2 Video Quality of Experience
The advent of video content delivery networks [2, 6] in the late

1990’s led to efforts in industry to define and measure quality met-

rics for video delivery. Since then the quality of video delivery is

a well studied topic with early work on the Akamai Stream Ana-

lyzer system which defined metrics such as startup time, rebuffer

ratio, bitrate and failures etc and measured these metrics using data

derived from video players deployed around the world [3, 66]. Sub-

sequently, [7] showed that a 1% increase in rebuffering correlated

with a 3-minute reduction in the amount of time users streamed

live content. A study on YouTube [21] found that bitrate fluctua-

tions strongly correlate with a user abandoning the session. Beyond

correlations, the first study [9] to establish a causal relationship

between video quality and user behavior used quasi-experimental

623

ACM SIGCOMM ’24, August 4–8, 2024, Sydney, NSW, Australia Chen et al.

Figure 12: The mean QoE scores, utilities, rebuffering ratios, and switching rates from local deployment. SODA again has the
highest mean QoE score and unlike all other baselines, simultaneously achieves ultra low mean rebuffering ratio and switching
rate. (Error bars represent 95% confidence intervals.)

Figure 13: The change in mean viewing durations (higher is
better), bitrates (higher is better), rebuffering ratios (lower is
better), and switching rates (lower is better) of SODA compared
to the production baseline.

designs (QEDs) to quantify the causal (adverse) impact of startup

delay, rebuffering, and failures on user engagement, abandonment,

and repeat viewership. A related work [11] built predictive models

for user engagement based on QoE metrics. Our work leverages

insights from these works in our ABR controller design.

7.3 Smoothed Online Convex Optimization
Our algorithm builds on recent developments in smoothed online

convex optimization (SOCO), a variant of online optimization that

penalizes switching between consecutive decisions via a “switch-

ing cost.” [25, 33, 34]. In recent years, the design and analysis of

algorithms for SOCO has received considerable attention, e.g., [14,

25, 31, 32, 34, 37], with optimal online algorithms emerging in vari-

ous settings [33, 42, 48, 62] and a variety of applications receiving

attention [10, 12, 26, 43, 53, 55, 57]. SOCO’s switching cost model

inspires our design of SODA for video streaming.

Our mathematical formulation of adaptive video streaming can

be viewed as a specific example of online (optimal) control [54].

Similar to online optimization, online control seeks to design a

controller to minimize the total cost incurred over a finite horizon.

The theoretical bounds in this paper are most related to works that

study how future predictions can improve online controller perfor-

mance [39, 47, 49, 52]. Our proofs follow an analytic framework for

studying MPC-based algorithms via exponentially decaying pertur-

bation bounds [49, 55, 56]. Our work shows that this decay property

holds under our model of adaptive video streaming, allowing us to

establish performance guarantees for SODA.

8 LIMITATIONS AND FUTUREWORK
An emerging genre (but, still a small fraction) of live streaming is

ultra-low latency live streams where the delay between the capture

of an event and its display to the user is required to be of the order

of a few seconds, as opposed to 10 to 20 seconds for the traditional

live streams used in our current work. In future work, we would

like to study if our SOCO-based strategy can be adapted for ultra-

low latency live streams with buffer lengths in the order of a few

seconds. The main challenge with ultra-small buffer sizes is that it

is harder to prevent rebuffering and bitrate switching in this regime

as the ABR controller needs to react to network fluctuations in a

significantly shorter amount of time.

9 CONCLUSION
In this work, we propose a smoothness-optimized dynamic adaptive

(SODA) controller that addresses this issue in a theoretically sound

way. Thanks to SODA’s robustness against prediction errors and

low runtime complexity, it is readily deployable in a wide range

of production environments. Through numerical simulations and

prototype evaluation, we show that SODA consistently outperforms

the state-of-the-art baselines. More importantly, we deployed SODA
in a major video streaming provider where SODA significantly re-

duced bitrate switching by up to 88.8% compared to a fine-tuned

production baseline. SODA’s novel time-based ABR formulation and

theoretical insights shed new light on how to achieve consistent

high-quality video streaming.

ACKNOWLEDGMENTS
We thank the anonymous reviewers and our shepherd for their valu-

able feedback, as well as colleagues at Amazon Prime Video for their

support with the production deployment of SODA. This work was

funded by NSF under grants CAREER-204564, CCF-2325956, CNS-

1763617, CNS-1901137, CNS-2102963, CNS-2106299, CNS-2106403,

CNS-2106463, CNS-2146814, CPS-2136197, and NGSDI-2105648, as

well as an Amazon Research Award. The research of Yiheng Lin

was additionally supported by Amazon AI4Science Fellowship and

PIMCO Graduate Fellowship in Data Science.

624

SODA: An Adaptive Bitrate Controller for Consistent High-Quality Video Streaming ACM SIGCOMM ’24, August 4–8, 2024, Sydney, NSW, Australia

REFERENCES
[1] Mun Choon Chan and Ramachandran Ramjee. 2002. TCP/IP Performance

over 3G Wireless Links with Rate and Delay Variation. In Proceedings of the
8th Annual International Conference on Mobile Computing and Networking
(MobiCom ’02). Atlanta, Georgia, USA, 71–82. isbn: 158113486X. doi: 10.1145

/570645.570655.

[2] John Dilley, Bruce M. Maggs, Jay Parikh, Harald Prokop, Ramesh K. Sitaraman,

andWilliamE.Weihl. 2002. Globally Distributed Content Delivery. IEEE Internet
Computing, 6, 5, 50–58.

[3] R.K. Sitaraman and R.W. Barton. 2003. Method and apparatus for measuring

stream availability, quality and performance. US Patent 7,010,598. (Feb. 2003).

[4] Z. Wang, A.C. Bovik, H.R. Sheikh, and E.P. Simoncelli. 2004. Image Quality

Assessment: From Error Visibility to Structural Similarity. IEEE Transactions
on Image Processing, 13, (Apr. 2004), 600–612, 4, (Apr. 2004). doi: 10.1109/TIP.2
003.819861.

[5] Junxian Huang, Qiang Xu, Birjodh Tiwana, Z. Morley Mao, Ming Zhang, and

Paramvir Bahl. 2010. Anatomizing Application Performance Differences on

Smartphones. In Proceedings of the 8th International Conference on Mobile
Systems, Applications, and Services (MobiSys ’10). San Francisco, California,

USA, 165–178. isbn: 9781605589855. doi: 10.1145/1814433.1814452.

[6] E. Nygren, Ramesh K. Sitaraman, and J. Sun. 2010. The Akamai Network: A

platform for high-performance Internet applications. ACM SIGOPS Operating
Systems Review, 44, 3, 2–19.

[7] Florin Dobrian, Vyas Sekar, Asad Awan, Ion Stoica, Dilip Joseph, Aditya Gan-

jam, Jibin Zhan, and Hui Zhang. 2011. Understanding the Impact of Video Qual-

ity on User Engagement. In Proceedings of the ACM SIGCOMM 2011 Conference
(SIGCOMM ’11). Toronto, Ontario, Canada, 362–373. isbn: 9781450307970. doi:

10.1145/2018436.2018478.

[8] Te-Yuan Huang, Nikhil Handigol, Brandon Heller, Nick McKeown, and Ramesh

Johari. 2012. Confused, timid, and unstable. In Proceedings of the 2012 Internet
Measurement Conference. ACM, New York, NY, USA, (Nov. 2012), 225–238. isbn:

9781450317054. doi: 10.1145/2398776.2398800.

[9] S. Shunmuga Krishnan and Ramesh K. Sitaraman. 2012. Video Stream Qual-

ity Impacts Viewer Behavior: Inferring Causality Using Quasi-Experimental

Designs. In Proceedings of the 2012 Internet Measurement Conference (IMC ’12).

Boston, Massachusetts, USA, 211–224. isbn: 9781450317054. doi: 10.1145/2398

776.2398799.

[10] Minghong Lin, Zhenhua Liu, Adam Wierman, and Lachlan LH Andrew. 2012.

Online algorithms for geographical load balancing. In Proceedings of the Inter-
national Green Computing Conference (IGCC), 1–10.

[11] Athula Balachandran, Vyas Sekar, Aditya Akella, Srinivasan Seshan, Ion Stoica,

and Hui Zhang. 2013. Developing a predictive model of quality of experience

for internet video. SIGCOMM Comput. Commun. Rev., 43, 4, (Aug. 2013), 339–
350. doi: 10.1145/2534169.2486025.

[12] Minghong Lin, Adam Wierman, Lachlan L. H. Andrew, and Eno Thereska.

2013. Dynamic Right-Sizing for Power-Proportional Data Centers. IEEE/ACM
Transactions on Networking, 21, 5, (Oct. 2013), 1378–1391. doi: 10.1109/TNET.2
012.2226216.

[13] Masoud Badiei, Na Li, and Adam Wierman. 2015. Online convex optimization

with ramp constraints. In 2015 54th IEEE Conference on Decision and Control
(CDC). IEEE, 6730–6736.

[14] Nikhil Bansal, Anupam Gupta, Ravishankar Krishnaswamy, Kirk Pruhs, Kevin

Schewior, and Cliff Stein. 2015. A 2-Competitive Algorithm For Online Convex

Optimization With Switching Costs. In Approximation, Randomization, and
Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM
2015) (Leibniz International Proceedings in Informatics (LIPIcs)). Naveen Garg,

Klaus Jansen, Anup Rao, and JoséD. P. Rolim, (Eds.) Vol. 40. Schloss Dagstuhl–Leibniz-

Zentrum fuer Informatik, Dagstuhl, Germany, 96–109. doi: 10.4230/LIPIcs

.APPROX-RANDOM.2015.96.

[15] Te-Yuan Huang, Ramesh Johari, Nick McKeown, Matthew Trunnell, and Mark

Watson. 2015. A Buffer-Based Approach to Rate Adaptation: Evidence from

a Large Video Streaming Service. ACM SIGCOMM Computer Communication
Review, 44, (Feb. 2015), 187–198, 4, (Feb. 2015). doi: 10.1145/2740070.2626296.

[16] Yan Liu and Jack Y. B. Lee. 2015. An Empirical Study of Throughput Prediction

in Mobile Data Networks. In 2015 IEEE Global Communications Conference
(GLOBECOM), 1–6. doi: 10.1109/GLOCOM.2015.7417858.

[17] Xiaoqi Yin, Abhishek Jindal, Vyas Sekar, and Bruno Sinopoli. 2015. A Control-

Theoretic Approach for Dynamic Adaptive Video Streaming over HTTP. In Pro-
ceedings of the 2015 ACM Conference on Special Interest Group on Data Commu-
nication. ACM, New York, NY, USA, (Aug. 2015), 325–338. isbn: 9781450335423.

doi: 10.1145/2785956.2787486.

[18] Mojgan Ghasemi, Partha Kanuparthy, Ahmed Mansy, Theophilus Benson, and

Jennifer Rexford. 2016. Performance Characterization of a Commercial Video

Streaming Service. In Proceedings of the 2016 Internet Measurement Conference.
ACM, New York, NY, USA, (Nov. 2016), 499–511. isbn: 9781450345262. doi:

10.1145/2987443.2987481.

[19] he1enh. 2016. Reproducing Network Research. (May 2016). https://reproducin

gnetworkresearch.wordpress.com/2016/05/30/cs244-16-failed-experiments-

with-fastmpc-integrating-rate-based-adaptive-streaming-into-vlc/.

[20] Yi Sun, Xiaoqi Yin, Junchen Jiang, Vyas Sekar, Fuyuan Lin, Nanshu Wang,

Tao Liu, and Bruno Sinopoli. 2016. CS2P: Improving Video Bitrate Selection

and Adaptation with Data-Driven Throughput Prediction. In Proceedings of
the 2016 ACM SIGCOMM Conference. ACM, New York, NY, USA, (Aug. 2016),

272–285. isbn: 9781450341936. doi: 10.1145/2934872.2934898.

[21] Christos George Bampis, Zhi Li, Anush Krishna Moorthy, Ioannis Katsavouni-

dis, Anne Aaron, and Alan Conrad Bovik. 2017. Study of Temporal Effects on

Subjective Video Quality of Experience. IEEE Transactions on Image Processing,
26, 11, 5217–5231. doi: 10.1109/TIP.2017.2729891.

[22] Hongzi Mao, Ravi Netravali, and Mohammad Alizadeh. 2017. Neural Adap-

tive Video Streaming with Pensieve. In ACM, (Aug. 2017), 197–210. isbn:

9781450346535. doi: 10.1145/3098822.3098843.

[23] Yanyuan Qin, Ruofan Jin, Shuai Hao, Krishna R. Pattipati, Feng Qian, Sub-

habrata Sen, Bing Wang, and Chaoqun Yue. 2017. A control theoretic approach

to ABR video streaming: A fresh look at PID-based rate adaptation. In IEEE
INFOCOM 2017 - IEEE Conference on Computer Communications. IEEE, (May

2017), 1–9. isbn: 978-1-5090-5336-0. doi: 10.1109/INFOCOM.2017.8057056.

[24] Zahaib Akhtar, Yun Seong Nam, Ramesh Govindan, Sanjay Rao, Jessica Chen,

Ethan Katz-Bassett, Bruno Ribeiro, Jibin Zhan, and Hui Zhang. 2018. Oboe:

Auto-Tuning Video ABR Algorithms to Network Conditions. In ACM, (Aug.

2018), 44–58. isbn: 9781450355674. doi: 10.1145/3230543.3230558.

[25] Niangjun Chen, Gautam Goel, and Adam Wierman. 2018. Smoothed Online

Convex Optimization in High Dimensions via Online Balanced Descent. In

Proceedings of Conference On Learning Theory (COLT), 1574–1594.
[26] Yingying Li, Guannan Qu, and Na Li. 2018. Online Optimization with Predic-

tions and Switching Costs: Fast Algorithms and the Fundamental Limit. (2018).

arXiv: 1801.07780v3 [math.OC].
[27] Darijo Raca, Jason J. Quinlan, Ahmed H. Zahran, and Cormac J. Sreenan. 2018.

Beyond Throughput: A 4G LTE Dataset with Channel and Context Metrics. In

Proceedings of the 9th ACMMultimedia Systems Conference. ACM, New York, NY,

USA, (June 2018), 460–465. isbn: 9781450351928. doi: 10.1145/3204949.3208123.

[28] Naman Agarwal, Brian Bullins, Elad Hazan, Sham Kakade, and Karan Singh.

2019. Online control with adversarial disturbances. In International Conference
on Machine Learning. PMLR, 111–119.

[29] Zahaib Akhtar, Yaguang Li, Ramesh Govindan, Emir Halepovic, Shuai Hao, Yan

Liu, and Subhabrata Sen. 2019. AViC: A Cache for Adaptive Bitrate Video. In

Proceedings of the 15th International Conference on Emerging Networking Exper-
iments And Technologies (CoNEXT ’19). Association for Computing Machinery,

Orlando, Florida, 305–317. isbn: 9781450369985. doi: 10.1145/3359989.3365423.

[30] AaronDAmes, Samuel Coogan,Magnus Egerstedt, GennaroNotomista, Koushil

Sreenath, and Paulo Tabuada. 2019. Control barrier functions: theory and ap-

plications. In 2019 18th European control conference (ECC). IEEE, 3420–3431.
[31] C.J. Argue, Sébastien Bubeck, Michael B. Cohen, Anupam Gupta, and Yin

Tat Lee. 2019. A Nearly-Linear Bound for Chasing Nested Convex Bodies. In

Proceedings of the 2019 Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA). Proceedings. Society for Industrial and Applied Mathematics, (Jan.

2019), 117–122. doi: 10.1137/1.9781611975482.8.

[32] Sébastien Bubeck, Bo’az Klartag, Yin Tat Lee, Yuanzhi Li, and Mark Sellke. 2019.

Chasing Nested Convex Bodies Nearly Optimally. In Proceedings of the 2020
ACM-SIAM Symposium on Discrete Algorithms (SODA). Proceedings. Society
for Industrial and Applied Mathematics, (Dec. 2019), 1496–1508. doi: 10.1137/1

.9781611975994.91.

[33] Gautam Goel, Yiheng Lin, Haoyuan Sun, and AdamWierman. 2019. Beyond on-

line balanced descent: An optimal algorithm for smoothed online optimization.

Advances in Neural Information Processing Systems, 32.
[34] Gautam Goel and Adam Wierman. 2019. An Online Algorithm for Smoothed

Regression and LQR Control. In Proceedings of the Machine Learning Research.
Vol. 89, 2504–2513. http://proceedings.mlr.press/v89/goel19a.html.

[35] Ming Shi, Xiaojun Lin, and Lei Jiao. 2019. On the value of look-ahead in com-

petitive online convex optimization. Proceedings of the ACM on Measurement
and Analysis of Computing Systems, 3, 2, 22.

[36] Kevin Spiteri, Ramesh Sitaraman, and Daniel Sparacio. 2019. From Theory to

Practice: Improving Bitrate Adaptation in the DASH Reference Player. ACM
Transactions on Multimedia Computing, Communications, and Applications, 15,
2s, (Apr. 2019), 1–29. doi: 10.1145/3336497.

[37] C. J. Argue, Anupam Gupta, and Guru Guruganesh. 2020. Dimension-Free

Bounds for Chasing Convex Functions. In Proceedings of Thirty Third Conference
on Learning Theory. PMLR, (July 2020), 219–241. Retrieved Feb. 4, 2022 from.

[38] Sarah Dean, Horia Mania, Nikolai Matni, Benjamin Recht, and Stephen Tu.

2020. On the sample complexity of the linear quadratic regulator. Foundations
of Computational Mathematics, 20, 4, 633–679.

[39] Yingying Li, Guannan Qu, and Na Li. 2020. Online optimization with predic-

tions and switching costs: Fast algorithms and the fundamental limit. IEEE
Transactions on Automatic Control, 66, 10, 4761–4768.

625

https://doi.org/10.1145/570645.570655
https://doi.org/10.1145/570645.570655
https://doi.org/10.1109/TIP.2003.819861
https://doi.org/10.1109/TIP.2003.819861
https://doi.org/10.1145/1814433.1814452
https://doi.org/10.1145/2018436.2018478
https://doi.org/10.1145/2398776.2398800
https://doi.org/10.1145/2398776.2398799
https://doi.org/10.1145/2398776.2398799
https://doi.org/10.1145/2534169.2486025
https://doi.org/10.1109/TNET.2012.2226216
https://doi.org/10.1109/TNET.2012.2226216
https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2015.96
https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2015.96
https://doi.org/10.1145/2740070.2626296
https://doi.org/10.1109/GLOCOM.2015.7417858
https://doi.org/10.1145/2785956.2787486
https://doi.org/10.1145/2987443.2987481
https://reproducingnetworkresearch.wordpress.com/2016/05/30/cs244-16-failed-experiments-with-fastmpc-integrating-rate-based-adaptive-streaming-into-vlc/
https://reproducingnetworkresearch.wordpress.com/2016/05/30/cs244-16-failed-experiments-with-fastmpc-integrating-rate-based-adaptive-streaming-into-vlc/
https://reproducingnetworkresearch.wordpress.com/2016/05/30/cs244-16-failed-experiments-with-fastmpc-integrating-rate-based-adaptive-streaming-into-vlc/
https://doi.org/10.1145/2934872.2934898
https://doi.org/10.1109/TIP.2017.2729891
https://doi.org/10.1145/3098822.3098843
https://doi.org/10.1109/INFOCOM.2017.8057056
https://doi.org/10.1145/3230543.3230558
https://arxiv.org/abs/1801.07780v3
https://doi.org/10.1145/3204949.3208123
https://doi.org/10.1145/3359989.3365423
https://doi.org/10.1137/1.9781611975482.8
https://doi.org/10.1137/1.9781611975994.91
https://doi.org/10.1137/1.9781611975994.91
http://proceedings.mlr.press/v89/goel19a.html
https://doi.org/10.1145/3336497

ACM SIGCOMM ’24, August 4–8, 2024, Sydney, NSW, Australia Chen et al.

[40] Emily Marx, Francis Y. Yan, and Keith Winstein. 2020. Implementing BOLA-

BASIC on Puffer: Lessons for the use of SSIM in ABR logic, (Nov. 2020).

[41] Darijo Raca, Dylan Leahy, Cormac J. Sreenan, and Jason J. Quinlan. 2020.

Beyond Throughput, The Next Generation: A 5G Dataset with Channel and

Context Metrics. In Proceedings of the 11th ACMMultimedia Systems Conference.
ACM, New York, NY, USA, (May 2020), 303–308. isbn: 9781450368452. doi:

10.1145/3339825.3394938.

[42] Mark Sellke. 2020. Chasing convex bodies optimally. In Proceedings of the
Thirty-First Annual ACM-SIAM Symposium on Discrete Algorithms (SODA ’20).

Society for Industrial and Applied Mathematics, USA, (Jan. 2020), 1509–1518.

Retrieved Oct. 15, 2021 from.

[43] Guanya Shi, Yiheng Lin, Soon-Jo Chung, Yisong Yue, and Adam Wierman.

2020. Online optimization with memory and competitive control. Advances in
Neural Information Processing Systems, 33, 20636–20647.

[44] Kevin Spiteri, Rahul Urgaonkar, and Ramesh K. Sitaraman. 2020. BOLA: Near-

Optimal Bitrate Adaptation for Online Videos. IEEE/ACM Transactions on Net-
working, 28, 4, (Aug. 2020), 1698–1711. doi: 10.1109/TNET.2020.2996964.

[45] Dongzhu Xu, Anfu Zhou, Xinyu Zhang, Guixian Wang, Xi Liu, Congkai An,

Yiming Shi, Liang Liu, and Huadong Ma. 2020. Understanding Operational 5G:

A FirstMeasurement Study on Its Coverage, Performance and Energy Consump-

tion. In (SIGCOMM ’20). Virtual Event, USA, 479–494. isbn: 9781450379557.

doi: 10.1145/3387514.3405882.

[46] F.Y. Yan, H. Ayers, C. Zhu, S. Fouladi, J. Hong, K. Zhang, P. Levis, and K.

Winstein. 2020. Learning in Situ: A Randomized Experiment in Video Streaming.

In Proceedings of the 17th USENIX Symposium on Networked Systems Design
and Implementation, NSDI 2020, 495–511. isbn: 9781939133137. https://www.us
enix.org/conference/nsdi20/presentation/yan.

[47] Chenkai Yu, Guanya Shi, Soon-Jo Chung, Yisong Yue, and AdamWierman. 2020.

The power of predictions in online control. Advances in Neural Information
Processing Systems, 33, 1994–2004.

[48] C. J. Argue, Anupam Gupta, Ziye Tang, and Guru Guruganesh. 2021. Chasing

Convex Bodies with Linear Competitive Ratio. Journal of the ACM, 68, 5, 1–10.

doi: 10.1145/3450349.

[49] Yiheng Lin, Yang Hu, Haoyuan Sun, Guanya Shi, Guannan Qu, and Adam

Wierman. 2021. Perturbation-based Regret Analysis of Predictive Control in

Linear Time Varying Systems. arXiv preprint arXiv:2106.10497.
[50] Yun Seong Nam, Jianfei Gao, Chandan Bothra, Ehab Ghabashneh, Sanjay Rao,

Bruno Ribeiro, Jibin Zhan, and Hui Zhang. 2021. Xatu: Richer Neural Network

Based Prediction for Video Streaming. Proceedings of the ACM on Measurement
and Analysis of Computing Systems, 5, 3, (Dec. 2021), 1–26. doi: 10.1145/3491056.

[51] Sungho Shin and Victor M. Zavala. 2021. Controllability and Observability Im-

ply Exponential Decay of Sensitivity in Dynamic Optimization. arXiv preprint
arXiv:2101.06350.

[52] Runyu Zhang, Yingying Li, and Na Li. 2021. On the regret analysis of online

LQR control with predictions. In 2021 American Control Conference (ACC). IEEE,
697–703.

[53] Nicolas Christianson, Christopher Yeh, Tongxin Li, Mahdi Torabi Rad, Azarang

Golmohammadi, and Adam Wierman. 2022. Robustifying machine-learned

algorithms for efficient grid operation. In NeurIPS 2022 Workshop on Tackling
Climate Change with Machine Learning. https://www.climatechange.ai/papers

/neurips2022/19.

[54] Elad Hazan and Karan Singh. 2022. Introduction to online nonstochastic control.

arXiv preprint arXiv:2211.09619.
[55] Yiheng Lin, Judy Gan, Guannan Qu, Yash Kanoria, and Adam Wierman. 2022.

Decentralized Online Convex Optimization in Networked Systems. In Interna-
tional Conference on Machine Learning. PMLR, 13356–13393.

[56] Yiheng Lin, Yang Hu, Guannan Qu, Tongxin Li, and Adam Wierman. 2022.

Bounded-Regret MPC via Perturbation Analysis: Prediction Error, Constraints,

and Nonlinearity. arXiv preprint arXiv:2210.12312.
[57] Weici Pan, Guanya Shi, Yiheng Lin, and Adam Wierman. 2022. Online opti-

mization with feedback delay and nonlinear switching cost. Proceedings of the
ACM on Measurement and Analysis of Computing Systems, 6, 1, 1–34.

[58] Talha Waheed, Ihsan Ayyub Qazi, Zahaib Akhtar, and Zafar Ayyub Qazi. 2022.

Coal Not Diamonds: How Memory Pressure Falters Mobile Video QoE. In

(CoNEXT ’22). Roma, Italy, 307–320. isbn: 9781450395083. doi: 10.1145/355505

0.3569120.

[59] Jecelyn Yeen. 2022. What’s New In DevTools (Chrome 99). (Feb. 2022). https:

//developer.chrome.com/en/blog/new-in-devtools-99/.

[60] A. Alomar, P. Hamadanian, A. Nasr-Esfahany, A. Agarwal, M. Alizadeh, and

D. Shah. 2023. CausalSim: A Causal Framework for Unbiased Trace-Driven

Simulation. In 1115–1147. isbn: 9781939133335. https://www.usenix.org/confe

rence/nsdi23/presentation/alomar.

[61] Chandan Bothra, Jianfei Gao, Sanjay Rao, and Bruno Ribeiro. 2023. Veritas:

Answering Causal Queries from Video Streaming Traces. In Proceedings of the
ACM SIGCOMM 2023 Conference (ACM SIGCOMM ’23). New York, NY, USA,

738–753. doi: 10.1145/3603269.3604828.

[62] Nicolas Christianson, Junxuan Shen, andAdamWierman. 2023. Optimal Robustness-

Consistency Tradeoffs for Learning-Augmented Metrical Task Systems. In

Proceedings of The 26th International Conference on Artificial Intelligence and
Statistics. PMLR, (Apr. 2023), 9377–9399.

[63] MDN contributors. 2023. WebDriver. (June 2023). https://developer.mozilla.org

/en-US/docs/Web/WebDriver.

[64] DASH Industry Forum. 2023. dash.js: A Reference Client Implementation for

the Playback of MPEG DASH via JavaScript and Compliant Browsers. https:

//github.com/Dash-Industry-Forum/dash.js.

[65] YouTube. 2023. YouTube Recommended Upload Encoding Settings. https://sup

port.google.com/youtube/answer/1722171.

[66] Akamai. [n. d.] Stream Analyzer Service Description. https://groups.cs.umass

.edu/ramesh/wp-content/uploads/sites/3/2023/10/Stream_Analyzer_Service

_Description.pdf. ().

626

https://doi.org/10.1145/3339825.3394938
https://doi.org/10.1109/TNET.2020.2996964
https://doi.org/10.1145/3387514.3405882
https://www.usenix.org/conference/nsdi20/presentation/yan
https://www.usenix.org/conference/nsdi20/presentation/yan
https://doi.org/10.1145/3450349
https://doi.org/10.1145/3491056
https://www.climatechange.ai/papers/neurips2022/19
https://www.climatechange.ai/papers/neurips2022/19
https://doi.org/10.1145/3555050.3569120
https://doi.org/10.1145/3555050.3569120
https://developer.chrome.com/en/blog/new-in-devtools-99/
https://developer.chrome.com/en/blog/new-in-devtools-99/
https://www.usenix.org/conference/nsdi23/presentation/alomar
https://www.usenix.org/conference/nsdi23/presentation/alomar
https://doi.org/10.1145/3603269.3604828
https://developer.mozilla.org/en-US/docs/Web/WebDriver
https://developer.mozilla.org/en-US/docs/Web/WebDriver
https://github.com/Dash-Industry-Forum/dash.js
https://github.com/Dash-Industry-Forum/dash.js
https://support.google.com/youtube/answer/1722171
https://support.google.com/youtube/answer/1722171
https://groups.cs.umass.edu/ramesh/wp-content/uploads/sites/3/2023/10/Stream_Analyzer_Service_Description.pdf
https://groups.cs.umass.edu/ramesh/wp-content/uploads/sites/3/2023/10/Stream_Analyzer_Service_Description.pdf
https://groups.cs.umass.edu/ramesh/wp-content/uploads/sites/3/2023/10/Stream_Analyzer_Service_Description.pdf

SODA: An Adaptive Bitrate Controller for Consistent High-Quality Video Streaming ACM SIGCOMM ’24, August 4–8, 2024, Sydney, NSW, Australia

Appendices are supporting material that has not been peer-reviewed.

A PROOF OUTLINE
In this section, we present an outline of our theoretical analysis for SODA. As we discussed in Section 4, our proof is based on an exponentially

decaying perturbation bound that relates the behavior of the solution to the optimization problem defining SODA as a function of problem

parameters. This section is organized as follows: We first introduce the modeling of SODA that we use to establish theoretical results in

Section A.1. Then, we introduce the exponentially decaying perturbation bound, its implications, and the proof idea in Section A.2. Next, we

present the outlines for proving SODA’s performance guarantees with the help of exponentially decaying perturbation bounds in Sections A.3

and A.4. Finally, we will discuss some sufficient conditions under which the optimal bitrate sequence can be approximated by a monotonic

sequence in Section A.5.

A.1 Theoretical Problem Setting
We first introduce the notation used to define the performance metrics and the variant of SODA studied in our theoretical analysis. To make

the formulation of the video streaming problem closer to a classic control problem, we define the “control action” 𝑢𝑡 as the inverse of the

bitrate (i.e., 𝑢𝑡 =
1

𝑟𝑡
). Recall that we set 𝑣 (𝑟) = 1

𝑟 in our theoretical analysis. Thus, we can write down a general form of the optimization

problem solved by SODA and use𝜓
𝑡+𝑝
𝑡

(
(𝜎𝑡−1, 𝜈𝑡−1); 𝜔̂𝑡 :𝑡+𝑝 ; 𝐹

)
to denote its optimal solution:

arg min

𝑥𝑡 :𝑡+𝑝 ,𝑢𝑡+1:𝑡+𝑝

𝑡+𝑝∑︁
𝜏=𝑡

𝜔̂𝜏𝑢
2

𝜏 + 𝛽
𝑡+𝑝∑︁
𝜏=𝑡

𝑏 (𝑥𝜏) + 𝛾
𝑡+𝑝+1∑︁
𝜏=𝑡

|𝑢𝜏 − 𝑢𝜏−1 |2 + 𝐹 (𝑥𝑡+𝑝 , 𝑢𝑡+𝑝+1) (3a)

s.t. 𝑥𝜏 = 𝑥𝜏−1 + 𝜔̂𝜏𝑢𝜏 − 1, for 𝜏 = 𝑡, . . . , 𝑡 + 𝑝, (3b)

0 ≤ 𝑥𝜏 ≤ 𝑥max,
1

𝑟max

≤ 𝑢𝜏 ≤
1

𝑟min

, for 𝜏 = 𝑡, . . . , 𝑡 + 𝑝, (3c)

𝑥𝑡−1 = 𝜎𝑡−1, 𝑢𝑡−1 = 𝜈𝑡−1 . (3d)

Here,𝜓
𝑡+𝑝
𝑡

(
(𝜎𝑡−1, 𝜈𝑡−1); 𝜔̂𝑡 :𝑡+𝑝 ; 𝐹

)
is defined to be a vector that contains the states 𝑥𝑡 :𝑡+𝑝 and control actions 𝑢𝑡+1:𝑡+𝑝 in the optimal solution.

The initial condition (𝜎𝑡−1, 𝜈𝑡−1), bandwidth sequence 𝜔̂𝑡 :𝑡+𝑝 , and terminal cost function 𝐹 are the parameters of the optimization problem.

For the terminal costs, we consider two types of functions: (1) The zero function 𝐹 = 0, i.e., 𝐹 (𝑥,𝑢) = 0 for all 𝑥,𝑢; (2) The indicator function

𝐹 = I𝜎,𝜈 , which is defined as

𝐹 (𝑥,𝑢) = I𝜎,𝜈 (𝑥,𝑢) =
{

0 if 𝑥 = 𝜎,𝑢 = 𝜈,

+∞ otherwise.

The first type of terminal cost will be used to define the performance metrics (competitive ratio and dynamic regret), and the sec-

ond type will be used in the algorithm design. Since we will use the indicator terminal cost frequently, we introduce the shorthand

˜𝜓
𝑡+𝑝
𝑡

(
(𝜎𝑡−1, 𝜈𝑡−1); 𝜔̂𝑡 :𝑡+𝑝 ; (𝜎𝑡+𝑝 , 𝜈𝑡+𝑝+1)

)
, which denotes

˜𝜓
𝑡+𝑝
𝑡

(
(𝜎𝑡−1, 𝜈𝑡−1); 𝜔̂𝑡 :𝑡+𝑝 ; I𝜎𝑡+𝑝 ,𝜈𝑡+𝑝+1

)
. We use 𝜄

𝑡+𝑝
𝑡

(
(𝜎𝑡−1, 𝜈𝑡−1); 𝜔̂𝑡 :𝑡+𝑝 ; 𝐹

)
to de-

note the optimal objective value of the optimization problem (3).

The model of SODA that we consider in the theoretical analysis is summarized in Algorithm 2. The major difference from the SODA
algorithm discussed in Section 3.3 is that we include the indicator terminal cost (in line 5) so that the last two states in the predictive

trajectory are equal to the target buffer level. This terminal constraint is important for our competitive ratio result in Theorem 4.1, for which

we need to bound the squared distance between the trajectories of SODA and the offline optimal controller by a part of the offline optimal cost.

Algorithm 2: SODA (for theoretical analysis)

Require: Prediction horizon 𝐾 .

1: for 𝑡 = 1, 2, . . . , 𝑁 do
2: Set 𝑡 ′ = min{𝑡 + 𝐾 − 1, 𝑁 }.
3: Receive predictions 𝜔̂𝑡+1:𝑡 ′ |𝑡 .
4: if 𝑡 ′ < 𝑁 then
5: Set terminal cost 𝐹𝑡 ′ = I𝑥∗,1/𝜔̂𝑡 ′ |𝑡 .
6: else
7: Set terminal cost 𝐹𝑡 ′ = 0.
8: end if
9: Commit 𝑢𝑡 = 𝜓

𝑡 ′−1

𝑡

(
(𝑥𝑡−1, 𝑢𝑡−1); 𝜔̂𝑡 :𝑡 ′ |𝑡 ; 𝐹𝑡 ′

)
.

10: end for

627

ACM SIGCOMM ’24, August 4–8, 2024, Sydney, NSW, Australia Chen et al.

Using the notations above, we can formally define the performance metrics we employ: Let cost(OPT) denote the offline optimal cost one

can achieve when exact predictions of all future bandwidth are available at the start of the problem, i.e., cost(OPT) = 𝜄𝑁
1

(
(𝑥0, 𝑢0);𝜔∗

1:𝑁
; 0

)
.

Then,

• Dynamic regret is an upper bound on the difference cost(SODA) − cost(OPT);
• Competitive ratio is an upper bound on the ratio cost(SODA)/cost(OPT).

A.2 Exponentially Decaying Perturbations
Exponentially decaying perturbations is a critical property of the finite-time optimal control problem that our analysis builds upon. We

define this property formally in Definition A.1.

Definition A.1 (Exponentially Decaying Perturbation Bound). We say the exponentially decaying perturbation bound holds if there exists
uniform constants 𝐶 > 0, 𝜌 ∈ (0, 1) such that the following inequalities hold:����𝜓𝑡+𝑝𝑡

(
(𝜎𝑡−1, 𝜈𝑡−1); 𝜔̂𝑡 :𝑡+𝑝 ; 0

)
𝑥𝜏
−𝜓𝑡+𝑝𝑡

(
(𝜎′𝑡−1

, 𝜈′𝑡−1
); 𝜔̂ ′𝑡 :𝑡+𝑝 ; 0

)
𝑥𝜏

����
≤ 𝐶𝜌𝜏−𝑡+1

(��𝜎𝑡−1 − 𝜎′𝑡−1

�� + ��𝜈𝑡−1 − 𝜈 ′𝑡−1

��) +𝐶 𝑡+𝑝∑︁
𝑗=𝑡

𝜌 |𝜏− 𝑗 |
���𝜔̂ 𝑗 − 𝜔̂ ′𝑗 ��� , (4)���� ˜𝜓

𝑡+𝑝
𝑡

(
(𝜎𝑡−1, 𝜈𝑡−1); 𝜔̂𝑡 :𝑡+𝑝 ; (𝜎𝑡+𝑝 , 𝜈𝑡+𝑝+1)

)
𝑥𝜏
−𝜓𝑡+𝑝𝑡

(
(𝜎′𝑡−1

, 𝜈′𝑡−1
); 𝜔̂ ′𝑡 :𝑡+𝑝 ; (𝜎′𝑡+𝑝 , 𝜈′𝑡+𝑝+1)

)
𝑥𝜏

����
≤ 𝐶𝜌𝜏−𝑡+1

(��𝜎𝑡−1 − 𝜎′𝑡−1

�� + ��𝜈𝑡−1 − 𝜈 ′𝑡−1

��) +𝐶 𝑡+𝑝∑︁
𝑗=𝑡

𝜌 |𝜏− 𝑗 |
���𝜔̂ 𝑗 − 𝜔̂ ′𝑗 ��� +𝐶𝜌𝑡+𝑝−𝜏 (���𝜎𝑡+𝑝 − 𝜎′𝑡+𝑝 ��� + ���𝜈𝑡+𝑝+1 − 𝜈 ′𝑡+𝑝+1���) . (5)

Intuitively, the exponential decay property (Definition A.1) holds if the impact of a perturbation on the initial condition (𝜎𝑡−1, 𝜈𝑡−1),
prediction 𝜔̂ 𝑗 , or terminal constraint (𝜎𝑡+𝑝 , 𝜈𝑡+𝑝+1) on the component 𝑥𝜏 in the optimal trajectory decays exponentially with respect to the

absolute difference between their corresponding time indices.

Due to its importance for the theoretical analysis of MPC-based algorithms, many previous works have established exponentially decaying

perturbation bounds for various cases of online optimization with switching costs [49], optimal control with unconstrained dynamics [49,

56], and online optimization in networked systems [55]. In contrast to previous work, however, the video streaming problem (3) that we

consider is a constrained optimal control problem. To this point, there has been limited success in establishing exponentially decaying

perturbation bounds for general constrained optimal control problems, and existing results that provide sufficient conditions for their validity

are difficult to verify [51, 56].

In this work, we leverage the special structure of the video streaming problem to show the exponentially decaying perturbation bound

holds in this setting. We require the following assumption about the buffer constraints, bandwidth, and the bitrate range.

Assumption A.1. There exists uniform constants 𝜔max > 𝜔min > 0 such that for any time step 𝑡 , we have that 𝜔min ≤ 𝜔𝑡 ≤ 𝜔max holds. We
also assume that 𝜔min/𝑟min ≥ 𝑥max, and 𝜔max/𝑟max − 1 ≤ −𝛿 holds for a fixed constant 𝛿 > 0.

Intuitively, Assumption A.1 guarantees that the controller can always fill up the buffer at the cost of choosing the smallest bitrate or

decrease the buffer level by choosing the largest bitrate. As we discussed in Section 4, this assumption is used to eliminate extreme boundary

cases in the analysis, but SODA empirically performs well even when Assumption A.1 is not strictly satisfied. Using this assumption, we show

the exponentially decaying perturbation property holds for the video streaming problem in Theorem A.1.

Theorem A.1. Under Assumption A.1, the exponentially decaying perturbation bound holds with constants

𝜌 =

©­­­­«
1 − 2

1 +
√︂

1 + max{6𝜔min (𝜔min+3),4𝑥max (𝜔min+8𝛾) }
𝜔3

min𝜖𝛽

ª®®®®¬
1

3(3+⌈𝑥max/𝛿⌉)

and

𝐶 =

(1 + 𝜔max)
(
3𝛽𝜔3

min +max{6𝜔min (𝜔min + 3), 4𝑥max (𝜔min + 8𝛾)}
)

𝜔3

min𝜌
3+⌈𝑥max/𝛿 ⌉

.

While the exponentially decaying property (Definition A.1) bounds the impact of parameter perturbations on the states, we extend the

definition to the control actions and show that this variant holds as a corollary of Theorem A.1.

628

SODA: An Adaptive Bitrate Controller for Consistent High-Quality Video Streaming ACM SIGCOMM ’24, August 4–8, 2024, Sydney, NSW, Australia

(𝑥0, 𝑢0) (𝑥∗
1
, 𝑢∗

1
) (𝑥∗

2
, 𝑢∗

2
) (𝑥∗

3
, 𝑢∗

3
) (𝑥∗

4
, 𝑢∗

4
)

(𝑥1, 𝑢1)

(𝑥2, 𝑢2)
(𝑥3, 𝑢3)

Figure 14: Illustration of the aggregations of per-step errors. In the figure, {(𝑥∗𝑡 , 𝑢∗𝑡)}𝑡=1,2,... denotes the offline optimal states
and control actions, and {(𝑥𝑡 , 𝑢𝑡)}𝑡=1,2,... denotes the buffer level achieved by SODA. The dashed trajectory from (𝑥𝑡 , 𝑢𝑡) denotes
the clairvoyant optimal trajectory from (𝑥𝑡 , 𝑢𝑡). At time 𝑡 , the per-step error 𝑒𝑡 leads to the deviation of the actual trajectory of
SODA with the clairvoyant optimal trajectory. The impact of the per-step error 𝑒1 at a future time step 𝑡 is the height of blue
area, which decays exponentially fast with respect to 𝑡 when exponentially decaying perturbation holds. Therefore, although a
per-step error occurs at every time step, the distance between (𝑥𝑡 , 𝑢𝑡) and (𝑥∗𝑡 , 𝑢∗𝑡) is still uniformly bounded.

Corollary A.2. Under Assumption A.1, for the control action 𝑢, we also have that����𝜓𝑡+𝑝𝑡

(
(𝜎𝑡−1, 𝜈𝑡−1); 𝜔̂𝑡 :𝑡+𝑝 ; 0

)
𝑢𝜏
−𝜓𝑡+𝑝𝑡

(
(𝜎′𝑡−1

, 𝜈′𝑡−1
); 𝜔̂ ′𝑡 :𝑡+𝑝 ; 0

)
𝑢𝜏

����
≤ 𝐶′𝜌𝜏−𝑡+1

(��𝜎𝑡−1 − 𝜎′𝑡−1

�� + ��𝜈𝑡−1 − 𝜈 ′𝑡−1

��) +𝐶′ 𝑡+𝑝∑︁
𝑗=𝑡

𝜌 |𝜏− 𝑗 |
���𝜔̂ 𝑗 − 𝜔̂ ′𝑗 ��� ,���� ˜𝜓

𝑡+𝑝
𝑡

(
(𝜎𝑡−1, 𝜈𝑡−1); 𝜔̂𝑡 :𝑡+𝑝 ; (𝜎𝑡+𝑝 , 𝜈𝑡+𝑝+1)

)
𝑢𝜏
−𝜓𝑡+𝑝𝑡

(
(𝜎′𝑡−1

, 𝜈′𝑡−1
); 𝜔̂ ′𝑡 :𝑡+𝑝 ; (𝜎′𝑡+𝑝 , 𝜈′𝑡+𝑝+1)

)
𝑢𝜏

����
≤ 𝐶′𝜌𝜏−𝑡+1

(��𝜎𝑡−1 − 𝜎′𝑡−1

�� + ��𝜈𝑡−1 − 𝜈 ′𝑡−1

��) +𝐶′ 𝑡+𝑝∑︁
𝑗=𝑡

𝜌 |𝜏− 𝑗 |
���𝜔̂ 𝑗 − 𝜔̂ ′𝑗 ��� +𝐶′𝜌𝑡+𝑝−𝜏 (���𝜎𝑡+𝑝 − 𝜎′𝑡+𝑝 ��� + ���𝜈𝑡+𝑝+1 − 𝜈 ′𝑡+𝑝+1���) ,

where the decay factor 𝜌 is the same as Theorem A.1, and the constant 𝐶′ is given by

𝐶′ =
𝐶 (1 + 𝜌)𝑟min + 𝜌

𝜔min𝑟min𝜌
.

Here, 𝐶 is the same as Theorem A.1.

To establish the exponentially decaying perturbation property, we first reduce the video streaming problem to a more general online

optimization problem with memory and inequality constraints. Then, we consider each possible combination of active inequality constraints

separately and show that the exponentially decaying perturbation property holds in each case. This only requires considering optimization

problems with equality constraints with second-order differentiable objectives. Lastly, we show that the exponential decay properties for

these separate cases can be combined to establish the exponential decay property for the original video streaming problem.

A.3 Proof Outline for Exact Predictions
We provide the formal version of Theorem 4.1 that gives the dynamic regret and competitive ratio for SODA with specific coefficients in

Theorem A.3.

Theorem A.3. Under Assumption A.1, consider SODA with the terminal constraints 𝑥𝑡+𝐾−1 = 𝑥, 𝑟𝑡+𝐾−1 = 𝜔̂𝑡+𝐾−1 |𝑡−1
. Define the weight 𝐶

and the decay factor 𝜌 to be the same as Theorem A.1, and the coefficient 𝐶′ is given by Corollary A.2. Suppose all predictions are exact (i.e.,
𝜔̂𝑚 |𝑛−1

= 𝜔𝑚 for𝑚 = 𝑛, . . . , 𝑛 + 𝐾 − 1) and the prediction horizon 𝐾 satisfies

𝐾 ≥ 1

4

ln

(
16

1 − 𝜌 ·
(
1 + (𝐶 +𝐶

′)2
1 − 𝜌

)
·
(
𝐶2 + (𝐶′)2

)
2

)
/ln

(
1

𝜌

)
= 𝑂 (1) .

Here, the coefficients 𝐶,𝐶′ and the decay factor 𝜌 are given by Theorem A.1 and Corollary A.2. Then, SODA achieves a dynamic regret of
𝐶1𝜌

𝐾−1cost(OPT) = 𝑂 (𝜌𝐾𝑁) and a competitive ratio of 1 +𝐶1𝜌
𝐾−1 = 1 +𝑂 (𝜌𝐾). Here, the coefficient 𝐶1 is given by

𝐶1 = 8

(
2(4𝛾 + 𝛽 + 𝜔max) ·

1

1 − 𝜌 ·
(
1 + (𝐶 +𝐶

′)2
1 − 𝜌

) (
𝐶2 + (𝐶′)2

)
·

4 + 𝜔2

min

𝜖𝛽𝜔2

min

)
1/2

.

and the notation 𝑂 (·) hides polynomial dependence on system parameters 𝜖, 𝛽,𝛾 and 𝑑 .

629

ACM SIGCOMM ’24, August 4–8, 2024, Sydney, NSW, Australia Chen et al.

The proof outline of Theorem A.3 contains two parts: (1) Bounding the per-step error of SODA at each time step when compared against

the hindsight optimal policy; (2) Showing that the past per-step does not accumulate to be unbounded over time.

Bounding the Per-step error. We introduce the concept of per-step error to characterize the decision error of SODA at each time step due

to its limited prediction power. While the prediction power of SODA is limited because it only has exact predictions of future bandwidths

within a finite horizon 𝐾 , the idea of per-step error also extends to inexact predictions (Section A.4). We provide the formal definition of the

per-step error in Definition A.2.

Definition A.2. The per-step error of SODA at time step 𝑡 (denoted as 𝑒𝑡) is defined as the sum of the difference between the actual state/action
pair of SODA (𝑥𝑡 , 𝑢𝑡) and the clairvoyant optimal next state from (𝑥𝑡−1, 𝑢𝑡−1), i.e.,

𝑒𝑡 B
���𝑥𝑡 −𝜓𝑁𝑡 ((𝑥𝑡−1, 𝑢𝑡−1);𝜔𝑡 :𝑁 ; 0)𝑥𝑡

��� + ���𝑢𝑡 −𝜓𝑁𝑡 ((𝑥𝑡−1, 𝑢𝑡−1);𝜔𝑡 :𝑁 ; 0)𝑢𝑡
���

Intuitively, starting from the state/action pair (𝑥𝑡−1, 𝑢𝑡−1), we compare the actual next state/action pair (𝑥𝑡 , 𝑢𝑡) of SODAwith the clairvoyant
optimal next state/action a controller would take if it had the exact predictions of all future bandwidths after time step 𝑡 . We define the

magnitude of this difference as the per-step error of SODA.
When the predictions of future bandwidths are exact, we leverage the exponentially decaying perturbation property to bound the per-step

error of SODA in Lemma A.4. We defer the proof of Lemma A.4 to Section C.1.

Lemma A.4. When the predictions for the future bandwidth are exact, the per-step error of SODA satisfies

𝑒2

𝑡 ≤ 16𝜌4𝐾−2

(
𝐶2 + (𝐶′)2

)
2
(��𝑥𝑡−1 − 𝑥∗𝑡−1

��2 + ��𝑢𝑡−1 − 𝑢∗𝑡−1

��2) + 8𝜌2𝐾−2

(
𝐶2 + (𝐶′)2

) (2 + 𝜔2

min)𝑏 (𝑥
∗
𝑡+𝐾−1

) + 2𝑏 (𝑥∗
𝑡+𝐾−2

)
𝜖𝜔2

min
.

The exponentially decaying coefficients 𝜌4𝐾−2
and 𝜌2𝐾−2

suggest that the per-step error improves exponentially fast as the prediction

horizon 𝐾 grows. Although one can simplify the expression by bounding the terms

��𝑥𝑡−1 − 𝑥∗𝑡−1

��2
,

��𝑢𝑡−1 − 𝑢∗𝑡−1

��2
, 𝑏 (𝑥∗

𝑡+𝐾−1
), and 𝑏 (𝑥∗

𝑡+𝐾−2
)

with some uniform constants, we keep these terms because the careful treatment is required to show the competitive ratio result.

Bounding the accumulation of past errors. Besides bounding the per-step errors, another important consequence of the exponentially

decaying perturbation bounds is that it guarantees the impact of a previous per-step error decays quickly over time. Therefore, when we

bound the total difference between SODA’s trajectory {(𝑥𝑡 , 𝑢𝑡)}𝑁𝑡=1
and the offline optimal trajectory {(𝑥∗𝑡 , 𝑢∗𝑡)}𝑁𝑡=1

, the aggregated contribution

of any per-step error term 𝑒𝜏 is up to a constant factor that depends on the decay factor rather than growing linearly with respect to the

total horizon length 𝑁 (see Figure 14 for an illustration). We state this result formally in Lemma A.5 and defer its proof to Section C.2.

Lemma A.5. The trajectory of SODA {(𝑥𝑡 , 𝑢𝑡)}𝑁𝑡=1
satisfies that

𝑁∑︁
𝑡=1

(��𝑥𝑡 − 𝑥∗𝑡 ��2 + ��𝑢𝑡 − 𝑢∗𝑡 ��2) ≤ 1

1 − 𝜌 ·
(
1 + (𝐶 +𝐶

′)2
1 − 𝜌

) 𝑁∑︁
𝑡=1

𝑒2

𝑡 ,

where {(𝑥∗𝑡 , 𝑢∗𝑡)}𝑁𝑡=1
denotes the offline optimal trajectory.

By combining Lemma A.4 and Lemma A.5, we bound the total squared distance between SODA’s trajectory and the offline optimal

trajectory by a part of the offline optimal cost times a coefficient of the order 𝑂 (𝜌2𝐾). Since the cost functions for adaptive video streaming

are well-conditioned, we can convert the bound on the total squared distance between the two trajectories into the competitive ratio bound

and the dynamic regret bound to finish the proof of Theorem A.3.

A.4 Proof Outline for Inexact Predictions
Compared with the case when all predictions are exact, a major challenge when the predictions are inexact is that one of SODA’s decisions
may cause the next state to violate the state constraint. In this section, we show in two steps that SODA’s decision trajectory will not violate

the state constraints. First, by increasing the coefficient 𝛽 of the buffer cost, one can guarantee that the offline optimal trajectory stays

arbitrarily close to the offline optimal trajectory (see Lemma A.6). Then, we show a bound on the per-step error (Definition A.2) which

depends on the prediction error (see Lemma A.7). Recall that the exponentially decaying perturbation bounds allow us to bound the distance

between the SODA and the offline optimal trajectories. Therefore, we can combine these results to show that under some mild assumptions

on the coefficient 𝛽 and the prediction errors, SODA will not violate any constraints, and moreover, it also satisfies a dynamic regret bound

(see Theorem A.8).

We first show that for any 𝜁 > 0, one can select the coefficient 𝛽 to be sufficiently large so that the offline optimal trajectory stays within

a margin of 𝜁 around the target buffer level 𝑥 . We state this result formally in Lemma A.6 and defer its proof to Section D.1.

Lemma A.6. Suppose 𝜁 ≤ min{𝑥, 𝑥max − 𝑥} is positive number and 𝑥0 ≤ 𝑥 + 𝜁 , if the coefficient 𝛽 for the buffer cost is sufficiently large such
that

𝛽 ≥ 1

𝜖𝜁
·
(
1 + 4𝛾

𝜔min

)
·
(

1

𝑟min
− 1

𝑟max

)
.

Then, the offline optimal trajectory satisfies 𝑥∗𝑡 ∈ [𝑥 − 𝜁 , 𝑥 + 𝜁] holds for all time step 𝑡 .

630

SODA: An Adaptive Bitrate Controller for Consistent High-Quality Video Streaming ACM SIGCOMM ’24, August 4–8, 2024, Sydney, NSW, Australia

Intuitively, Lemma A.6 holds because increasing 𝛽 makes staying close to the target buffer level more important. In the extreme case that

𝛽 tends to +∞, the offline optimal will ignore the distortion/switching cost and select actions so that the buffer level always equal to 𝑥 .

Recall that the per-step error of SODA is defined in Definition A.2. We bound the per-step error in Lemma A.7 and defer its proof to

Section D.2.

Lemma A.7. When the predictions for the future bandwidth are inexact, the per-step error of SODA satisfies

𝑒𝑡 ≤ (𝐶 +𝐶′)𝜌𝐾
(
𝑥max +

1

𝑟min
− 1

𝑟max

)
+ (𝐶 +𝐶′) · 𝐸 (𝑡 − 1, 𝐾) +

��𝜔𝑡 − 𝜔̂𝑡 |𝑡−1

��
𝑟min

,

where 𝐸 (𝑡 − 1, 𝐾) B ∑𝑡+𝐾−1

𝜏=𝑡 𝜌𝜏−𝑡
��𝜔̂𝜏 |𝑡−1

− 𝜔𝜏
��.

Similar to the proof outline for the exact prediction case in Section A.3, we can apply Lemma A.5 to bound the accumulation of past errors.

With the help of Lemma A.6 and Lemma A.7, we show our main result for SODA when the predictions of the future bandwidths are inexact

in Theorem A.8. We defer the proof of Theorem A.8 to Section D.3.

TheoremA.8. Under Assumption A.1, consider SODAwith the terminal constraints 𝑥𝑡+𝐾−1 = 𝑥, 𝑟𝑡+𝐾−1 = 𝜔̂𝑡+𝐾−1 |𝑡−1
. Let𝐷 B min{𝑥, 𝑥max−

𝑥}. Suppose the weight 𝛽 , the prediction horizon 𝐾 , and the prediction errors satisfy that

𝛽 ≥ 3

𝜖𝐷
·
(
1 + 4𝛾

𝜔min

)
·
(

1

𝑟min
− 1

𝑟max

)
, and

𝐸 (𝑡, 𝐾) + 𝜌𝐾 ≤ (1 − 𝜌)𝐷

3𝐶 (1 +𝐶 +𝐶′)
(
1 + 𝑥max + 1

𝑟min
− 1

𝑟max

) ,
where, recall, 𝐸 (𝑡, 𝐾) = ∑𝑡+𝐾

𝜏=𝑡+1 𝜌
𝜏−𝑡−1

��𝜔̂𝜏 |𝑡 − 𝜔𝜏 �� . Then, the buffer levels in the SODA’s decision trajectory never hits the constraint boundary,
i.e., 0 < 𝑥𝑡 < 𝑥max for 𝑡 = 1, . . . , 𝑁 . Further, SODA achieves a dynamic regret of

2

(
1 + 1

𝑟min
+𝐶 +𝐶′

)
2
(
1 + 𝑥max + 1

𝑟min
− 1

𝑟max

)
(1 − 𝜌)3/2

·
√︁

4𝛾 + 𝛽 + 𝜔max ·
√︁
E · cost(OPT)+(

1 + 1

𝑟min
+𝐶 +𝐶′

)
4
(
1 + 𝑥max + 1

𝑟min
− 1

𝑟max

)
2

(4𝛾 + 𝛽 + 𝜔max)

(1 − 𝜌)3
· E,

where E = 𝜌2𝐾𝑁 +∑𝐾
𝜅=1

𝜌𝜅𝐸𝜅 . Here 𝐸𝜅 B
∑𝑁
𝑡=1

��𝜔̂𝑡+𝜅 |𝑡 − 𝜔𝑡+𝜅 ��2.
Note that the dynamic regret bound shown in Theorem A.8 is in the order of 𝑂 (

√
E𝑁 + E), since cost(OPT) = 𝑂 (𝑁). Intuitively, from the

form of 𝐸𝑡 (𝐾), we see that predicting the future bandwidth 𝜔𝜏 accurately at time step 𝑡 becomes less important as (𝜏 − 𝑡) increases.

A.5 Proof Outline for Efficient Structure
In this section, we show that optimal solution of the finite-time optimal control problem solved by SODA can be approximated well by a

monotonic sequence of bitrates when the coefficient 𝛾 of the switching cost is sufficiently large (see Theorem A.9). Although this result is

shown for the continuous variable case, it also provides some insight as to why the efficient approximate solver in Algorithm 1 can provide

identical decisions to the brute-force solver with relatively high probabilities, as shown in Figure 8.

Theorem A.9. Let 𝜔̂×𝐾 denote the sequence {𝜔̂, . . . , 𝜔̂} with length 𝐾 . For any 𝜆 > 0, when the coefficient 𝛾 is sufficiently large such that

𝛾 ≥ 𝐾2

𝜆2

(
𝜔̂

(
1

𝑟2

min
− 1

𝑟2

max

)
+ 𝛽 max{𝑥2, 𝜖 (𝑥max − 𝑥)2}

)
,

we have that the following inequality holds for all 𝜏 ∈ {𝑡, 𝑡 + 1, . . . , 𝑡 + 𝐾 − 1}:��� ˆ𝜓𝑡+𝐾−1

𝑡 ((𝜎𝑡−1, 𝜈𝑡−1); 𝜔̂×𝐾 ; 0)𝑢𝜏 − ˆ𝜙𝑡+𝐾−1

𝑡 ((𝜎𝑡−1, 𝜈𝑡−1); 𝜔̂ ; 0)𝑢𝜏
��� ≤ 𝜆.

Note that ˆ𝜙𝑡+𝐾−1

𝑡 ((𝜎𝑡−1, 𝜈𝑡−1); 𝜔̂ ; 0)𝑢𝜏 is monotonic by Lemma A.10.

We defer the formal proof of Theorem A.9 to Section E.2. The theoretical insight provided by Theorem A.9 aligns with our empirical result

in Figure 8. Specifically, if we increase the coefficient 𝛾 while keeping the prediction horizon 𝐾 fixed, the decision made by the efficient

monotonic approximation approach (Algorithm 1) is more likely to be identical with the brute-force solver. On the other hand, if we increase

𝐾 and fix 𝛾 , it is more challenging for Algorithm 1 to match the decision of the brute-force solver.

To show Theorem A.9, we first consider a setting where the objective function only contains the switching cost terms (i.e., the distortion

cost and the buffer cost are removed.) This can be viewed as the extreme case when 𝛾 tends to +∞ so that both 𝛼 and 𝛽 are negligible. In this

scenario, we show the optimal sequence of the inverse bitrates is monotonic. We state this result formally in Lemma A.10 and defer its proof

to Section E.1.

631

ACM SIGCOMM ’24, August 4–8, 2024, Sydney, NSW, Australia Chen et al.

Lemma A.10. Under the same assumption as Theorem A.9, consider the optimal solution to the optimization problem

ˆ𝜙𝑡+𝐾−1

𝑡 ((𝜎𝑡−1, 𝜈𝑡−1); 𝜔̂ ; 0) B arg min

𝑢𝑡 :𝑡+𝐾−1

𝑡+𝐾−1∑︁
𝜏=𝑡

𝛾 · (𝑢𝑡 − 𝑢𝑡−1)2

s.t. 𝑥𝜏 = 𝑥𝜏−1 + 𝜔̂𝑢𝜏 − 1, for 𝜏 = 𝑡, . . . , 𝑡 + 𝐾 − 1,

𝑥𝜏 ∈ [0, 𝑥max], 𝑢𝜏 ∈
[

1

𝑟max
,

1

𝑟min

]
, for 𝜏 = 𝑡, . . . , 𝑡 + 𝐾 − 1,

𝑥𝑡−1 = 𝜎𝑡−1, 𝑢𝑡−1 = 𝜈𝑡−1 . (6)

The solution satisfies that: If 𝜈𝑡−1 > 1/𝜔̂ , then the sequence 𝜈𝑡−1, ˆ𝜙𝑡+𝐾−1

𝑡 ((𝜎𝑡−1, 𝜈𝑡−1); 𝜔̂ ; 0) is monotonically decreasing; If 𝜈𝑡−1 < 1/𝜔̂ , then
the sequence 𝜈𝑡−1, ˆ𝜙𝑡+𝐾−1

𝑡 ((𝜎𝑡−1, 𝜈𝑡−1); 𝜔̂ ; 0) is monotonically increasing; If 𝜈𝑡−1 = 1/𝜔̂ , the optimal solution is 𝑢𝑡 = 𝑢𝑡+1 = · · · = 𝑢𝑡+𝐾−1 =

𝜈𝑡−1 = 1/𝜔̂ .

The key observation that allows us to generalize Lemma A.10 to the case where the distortion/buffer costs are non-negligible is the

following: If we change the variable of (6) to 𝑎𝑡 = 𝑢𝑡 − 𝑢𝑡−1, which denotes the increments of the control actions, the objective of (6) is a

𝛾-strongly convex function of (𝑎𝑡 , . . . , 𝑎𝑡+𝐾−1). Any deviation from the optimal solution of (6) will cause a loss on the total switching costs

that grows with 𝛾 . When 𝛾 is sufficiently large, a feasible solution cannot use its gain on the distortion/buffer costs to cancel the loss on the

total switching cost if it deviates too much from the optimal solution of (6).

B PROOFS OF THE EXPONENTIALLY DECAYING PERTURBATION BOUNDS
In this section, we establish the critical exponentially decaying perturbation bounds (Definition A.1). Instead of just focusing on the video

streaming application itself, we establish the perturbation bound for a more general SOCO with memory framework.

Specifically, we consider the following finite-time optimal control problem with memory 𝐻 .

𝜓 (𝑦, 𝑧; 𝜇,𝑤, 𝛿) = arg min

𝑥−𝐻+1:𝑝+𝐻−1

𝑝∑︁
𝑡=0

𝑓𝑡 (𝑥𝑡 ; 𝜇𝑡) +
𝑝+𝐻−1∑︁
𝑡=0

𝑐𝑡 (𝑥𝑡 :𝑡−𝐻+1;𝑤𝑡) (7a)

s.t. 𝑥𝑡 ∈ [0, 𝑥max] ⊆ R,∀0 ≤ 𝑡 ≤ 𝑝, (7b)

𝑥𝑡 − 𝑥𝑡−1 ≥ −𝛿𝑡 ,∀0 ≤ 𝑡 ≤ 𝑝 + 1, (7c)

𝑥−𝐻+1:−1 = 𝑦, 𝑥𝑝+1:𝑝+𝐻−1 = 𝑧, (7d)

where 𝑦, 𝑧 ∈ [0, 𝑥max]𝐻−1
, 𝜇 ∈ [0, 𝑥max]𝑝+1,𝑤 ∈ W𝑝+𝐻 , 𝛿 ∈ Δ𝑝+2. Here, the objective function (7a) contains the hitting costs 𝑓𝑡 (𝑥𝑡 ; 𝜇𝑡)

(parameterized by 𝜇𝑡) and the switching costs 𝑐𝑡 (𝑥𝑡 :𝑡−𝐻+1;𝑤𝑡) (parameterized by 𝑤𝑡). For the constraints, (7b) imposes a box constraint

on each decision variable 𝑥𝑡 ; (7c) imposes a constraint on how much 𝑥𝑡 can decrease at each time step; and (7d) specifies the boundary

conditions of the optimization problem.

In the special case of video streaming, the decision is on the buffer level 𝑥𝑡 . Given the buffer levels, the inverse of the bitrate 𝑢𝑡 B 1/𝑟𝑡 is
uniquely decided by the equation

𝑢𝑡 = (𝑥𝑡 − 𝑥𝑡−1 + 1)/𝜔𝑡 ,
where 𝜔𝑡 denotes the bandwidth. The memory length 𝐻 = 3. For the hitting cost, we have 𝜇𝑡 ≡ 𝑥 , and

𝑓𝑡 (𝑥 ; 𝜇𝑡) = 𝛽𝑏 (𝑥) =
{
𝛽 (𝑥 − 𝑥)2, if 𝑥 ≤ 𝑥,
𝜖𝛽 (𝑥 − 𝑥)2, otherwise.

For the switching cost, we have𝑤𝑡 = (𝜔𝑡 , 𝜔𝑡−1) and

𝑐𝑡 (𝑥𝑡 :𝑡−2;𝑤𝑡) = 𝜔𝑡𝑢2

𝑡 + 𝛾 (𝑢𝑡 − 𝑢𝑡−1)2

=
(𝑥𝑡 − 𝑥𝑡−1 + 1)2

𝜔𝑡
+ 𝛾 (𝜔𝑡−1𝑥𝑡 + 𝜔𝑡𝑥𝑡−2 − (𝜔𝑡 + 𝜔𝑡−1)𝑥𝑡−1 + (𝜔𝑡−1 − 𝜔𝑡))2

𝜔2

𝑡𝜔
2

𝑡−1

.

The first constraint 𝑥𝑡 ∈ [0, 𝑥max] of (7) matches the buffer constraint of the video streaming problem exactly.

The second constraint 𝑥𝑡 − 𝑥𝑡−1 ≥ −𝛿𝑡 corresponds to the constraint that 𝑢𝑡 ≥ 1

𝑟max

in (3). Thus, when applying (7) to video streaming,

we have 𝛿𝑡 = 1 − 𝜔𝑡
𝑟max

. By Assumption A.1, we have 𝛿𝑡 ≥ 𝛿 > 0.

Given the relationship between SOCO with memory problem and adaptive video streaming problem, we only need to establish the

exponentially decaying perturbation bound for the more general SOCO with memory problem. To show this perturbation bound, we need

the following assumption about the objective function and constraints:

Assumption B.1. We need the following assumption on the optimization problem (7) for the exponentially decaying perturbation property to
hold:

632

SODA: An Adaptive Bitrate Controller for Consistent High-Quality Video Streaming ACM SIGCOMM ’24, August 4–8, 2024, Sydney, NSW, Australia

1) 𝑓𝑡 (·; 𝜇𝑡) : R→ R is strongly convex for all 𝑡 and 𝜇𝑡 ∈ [0, 𝑥max]. We further assume there exists two𝑚𝑓 -strongly convex and ℓ𝑓 -smooth functions

𝑓
(0)
𝑡 (·; 𝜇𝑡), 𝑓 (1)𝑡 (·; 𝜇𝑡) : R→ R in C2 such that 𝑓𝑡 (𝑥𝑡 ; 𝜇𝑡) = 𝑓

(0)
𝑡 (𝑥𝑡 ; 𝜇𝑡) for 𝑥𝑡 ∈ [0, 𝜇𝑡] and 𝑓𝑡 (𝑥𝑡) = 𝑓

(1)
𝑡 (𝑥𝑡 ; 𝜇𝑡) for 𝑥𝑡 ∈ [𝜇𝑡 , 𝑥max]. We

also assume that for 𝑗 = 1, 2, 𝑓 (𝑗)𝑡 satisfies that for all 𝑥𝑡 , 𝜇𝑡 ∈ [0, 𝑥max],

∇𝑥𝑡 𝑓 (𝑗)𝑡 (𝑥𝑡 ; 𝜇𝑡)

 +

∇𝜇𝑡 𝑓 (𝑗)𝑡 (𝑥𝑡 ; 𝜇𝑡)

 ≤ 𝐿𝑓 , and

∇𝜇𝑡∇𝑥𝑡 𝑓 (𝑗)𝑡 (𝑥𝑡 ; 𝜇𝑡)

 ≤ ℓ𝜇 .

2) 𝑐𝑡 (·;𝑤𝑡) : R𝐻 → R is convex and ℓ𝑐 -smooth for all 𝑡 and 𝑤𝑡 ∈ W ⊂ R𝑞 . 𝑐𝑡 (·;𝑤𝑡) is in C2 on [0, 𝑥max]𝐻 . We also assume that for all
𝑤𝑡 ∈ W and feasible 𝑥𝑡 :𝑡−𝐻+1, we have

∇𝑥𝑡 :𝑡−𝐻+1𝑐𝑡 (𝑥𝑡 :𝑡−𝐻+1;𝑤𝑡)

 +

∇𝑤𝑡 𝑐𝑡 (𝑥𝑡 :𝑡−𝐻+1;𝑤𝑡)

 ≤ 𝐿𝑐 , and

∇𝑤𝑡∇𝑥𝑡 :𝑡−𝐻+1𝑐𝑡 (𝑥𝑡 :𝑡−𝐻+1;𝑤𝑡)

 ≤ ℓ𝑤 .
3) We have 𝛿𝑡 ∈ Δ holds for all 𝑡 , where Δ is a closed interval on R and is bounded below by some positive constant 𝛿 . Denote 𝑑 B ⌈𝑥max/𝛿⌉.

In the special case of the video streaming problem, Assumption B.1 is satisfied with the parameters𝑚𝑓 = 𝜖𝛽 , ℓ𝑓 = ℓ𝜇 = 𝛽 , ℓ𝑐 =
2(𝜔min+3)
𝜔2

min

,

ℓ𝑤 =
4𝑥max (𝜔min+8𝛾)

𝜔3

min

. In addition, both 𝐿𝑓 and 𝐿𝑐 are bounded.

We state the exponentially decaying perturbation bound for the SOCO with memory problem formally in Theorem B.1 and defer its proof

to Appendix B.1.

Theorem B.1. Under Assumption B.1, if 𝑝 ≥ 𝑑 , the inequality

𝜓 (𝑦, 𝑧; 𝜇,𝑤, 𝛿)𝑡 −𝜓 (𝑦′, 𝑧′; 𝜇′,𝑤 ′, 𝛿 ′)𝑡

≤ 𝐶
(
𝜌𝑡

𝑦 − 𝑦′

 + 𝜌𝑝−𝑡

𝑧 − 𝑧′

) +𝐶 ©­«
𝑝∑︁
𝜏=0

𝜌 |𝑡−𝜏 |
��𝜇𝜏 − 𝜇′𝜏 �� + 𝑝+𝐻−1∑︁

𝜏=0

𝜌 |𝑡−𝜏 |

𝑤𝜏 −𝑤 ′𝜏

 + 𝑝+1∑︁

𝜏=0

𝜌 |𝑡−𝜏 |

𝛿𝜏 − 𝛿 ′𝜏

ª®¬ (8)

holds for all 𝑡 ∈ [0, 𝑝] and 𝑦, 𝑧 ∈ [𝑥, 𝑥]𝐻−1. Here,

𝜌 =
©­­«1 − 2

1 +
√︃

1 + (ℓ/𝑚𝑓)

ª®®¬
1

𝐻 (𝐻+𝑑)

,𝐶 =
2ℓ

𝑚𝑓 𝜌
(𝐻−2) (𝐻+𝑑) ,

where ℓ B max{𝐻ℓ𝑐 , ℓ𝑤} and ℓ̄ B max{𝐻ℓ𝑓 , ℓ𝜇 , ℓ}.

In the special case of the video streaming, we see that

ℓ = max{3ℓ𝑐 , ℓ𝑤} =
max{6𝜔min (𝜔min + 3), 4𝑥max (𝜔min + 8𝛾)}

𝜔3

min

.

Therefore, we have

𝜌 =

©­­­­«
1 − 2

1 +
√︂

1 + max{6𝜔min (𝜔min+3),4𝑥max (𝜔min+8𝛾) }
𝜔3

min
𝜖𝛽

ª®®®®¬
1

3(3+⌈𝑥max/𝛿⌉)

.

The coefficient 𝐶 is bounded by

𝐶 ≤
3𝛽𝜔3

min
+max{6𝜔min (𝜔min + 3), 4𝑥max (𝜔min + 8𝛾)}

𝜔3

min
𝜌3+⌈𝑥max/𝛿 ⌉

.

Discussion about different distortion costs. Note that Assumption B.1 still holds if we replace the distortion cost function 𝑣 (𝑟) = 1

𝑟 by

𝑣 (𝑟) = log(𝑟max/𝑟). This is because the new switching cost

𝑐′𝑡 (𝑥𝑡 :𝑡−2;𝑤𝑡) = 𝜔𝑡𝑢𝑡 log(𝑟max𝑢𝑡) + 𝛾 (𝑢𝑡 − 𝑢𝑡−1)2

= (𝑥𝑡 − 𝑥𝑡−1 + 1) log

(
𝑟max (𝑥𝑡 − 𝑥𝑡−1 + 1)

𝜔𝑡

)
+ 𝛾 (𝜔𝑡−1𝑥𝑡 + 𝜔𝑡𝑥𝑡−2 − (𝜔𝑡 + 𝜔𝑡−1)𝑥𝑡−1 + (𝜔𝑡−1 − 𝜔𝑡))2

𝜔2

𝑡𝜔
2

𝑡−1

also satisfies Assumption B.1 for any𝑤𝑡 = (𝜔𝑡 , 𝜔𝑡−1) ∈ [𝜔min, 𝜔max]2 and feasible 𝑥𝑡 :𝑡−2.

633

ACM SIGCOMM ’24, August 4–8, 2024, Sydney, NSW, Australia Chen et al.

B.1 Proof of Theorem B.1
To show Theorem B.1, we first need to define indicators of active constraints, denoted as 𝜉 ∈ {0, 1}4𝑝+5. Specifically, given the unique optimal

solution 𝑥0:𝑝 = 𝜓 (𝑦, 𝑧; 𝜇,𝑤, 𝛿) under a tuple of parameters (𝑦, 𝑧; 𝜇,𝑤, 𝛿), we consider whether the following equality conditions hold:

𝜉1,𝑡 = 1{𝑥𝑡 = 0},∀0 ≤ 𝑡 ≤ 𝑝;

𝜉2,𝑡 = 1{𝑥𝑡 = 𝑥max},∀0 ≤ 𝑡 ≤ 𝑝;

𝜉3,𝑡 = 1{𝑥𝑡 = 𝜇𝑡 },∀0 ≤ 𝑡 ≤ 𝑝;

𝜉4,𝑡 = 1{𝑥𝑡 − 𝑥𝑡−1 = −𝛿𝑡 },∀0 ≤ 𝑡 ≤ 𝑝 + 1.

And we define indicators of the sides (denoted as 𝜎 ∈ {0, 1}𝑝+1) as the following:
𝜎𝑡 = 1{𝑥𝑡 ∈ [𝜇𝑡 , 𝑥max]},∀0 ≤ 𝑡 ≤ 𝑝.

To simplify the notation, we let 𝜃 B (𝜇,𝑤, 𝛿) ∈ Θ B [0, 𝑥max]𝑝+1 ×W𝑝+𝐻 × Δ𝑝+2. While𝜓 (𝑦, 𝑧;𝜃) can decide a unique pair of (𝜉, 𝜎), we
can also define a new equality-constrained optimization problem using (𝑦, 𝑧;𝜃) and (𝜉, 𝜎):

Definition B.1. We define the equality-constrained optimization problem ˆ𝜓 (𝑦, 𝑧;𝜃 ; 𝜉, 𝜎) as

ˆ𝜓 (𝑦, 𝑧;𝜃 ; 𝜉, 𝜎) = arg min

𝑥−𝐻+1:𝑝+𝐻−1

𝑝∑︁
𝑡=0

𝑓
(𝜎𝑡)
𝑡 (𝑥𝑡 ; 𝜇𝑡) +

𝑝+𝐻−1∑︁
𝑡=0

𝑐𝑡 (𝑥𝑡 :𝑡−𝐻+1;𝑤𝑡) (9a)

s.t. 𝑥𝑡 =


0, if 𝜉1,𝑡 = 1

𝑥max, if 𝜉2,𝑡 = 1

𝜇𝑡 , if 𝜉3,𝑡 = 1

,∀0 ≤ 𝑡 ≤ 𝑝, (9b)

𝑥𝑡 − 𝑥𝑡−1 = −𝛿𝑡 , if 𝜉4,𝑡 = 1,∀0 ≤ 𝑡 ≤ 𝑝 + 1, (9c)

𝑥−𝐻+1:−1 = 𝑦, 𝑥𝑝+1:𝑝+𝐻−1 = 𝑧. (9d)

Note that it is possible that the optimization problem
ˆ𝜓 (𝑦, 𝑧;𝜃 ; 𝜉, 𝜎) for some parameters and constraint configurations. We use 𝜄 (𝑦, 𝑧;𝜃 ; 𝜉, 𝜎)

to denote the optimal value of this optimization problem. The following lemma states that the optimal solution of (7) will not change if we

remove all inactive inequality constraints and leave active constraints as equality constraints.

Lemma B.2. Suppose Assumption B.1 holds and 𝑝 ≥ 𝑑 . For 𝑦, 𝑧 ∈ [0, 𝑥max]𝐻−1 and 𝜃 ∈ Θ, let 𝜉, 𝜎 be the corresponding indicators of active
constraints/sides. Then, we have

𝜓 (𝑦, 𝑧;𝜃) = ˆ𝜓 (𝑦, 𝑧;𝜃 ; 𝜉, 𝜎) and 𝜄 (𝑦, 𝑧;𝜃) = 𝜄 (𝑦, 𝑧;𝜃 ; 𝜉, 𝜎) .

Proof of Lemma B.2. Note that

𝜄 (𝑦, 𝑧;𝜃) ≥ 𝜄 (𝑦, 𝑧;𝜃 ; 𝜉, 𝜎)
because the optimization problem on the RHS has less constraints. If the inequality holds with equality, wemust have𝜓 (𝑦, 𝑧;𝜃) = ˆ𝜓 (𝑦, 𝑧;𝜃 ; 𝜉, 𝜎)
since the optimal solution for the LHS is feasible for the RHS by the assumption on active constraints, and the optimization problem on the

RHS has a unique solution. Otherwise, we must have

𝜓 (𝑦, 𝑧;𝜃) ≠ ˆ𝜓 (𝑦, 𝑧;𝜃 ; 𝜉, 𝜎) , and 𝜄 (𝑦, 𝑧;𝜃) > 𝜄 (𝑦, 𝑧;𝜃 ; 𝜉, 𝜎) .
Consider the convex combination 𝜁 (𝜂) for 𝜂 ∈ [0, 1] defined as

𝜁 (𝜂) = (1 − 𝜂)𝜓 (𝑦, 𝑧;𝜃) + 𝜂 ˆ𝜓 (𝑦, 𝑧;𝜃 ; 𝜉, 𝜎) .
Note that 𝜁 (𝜂) satisfies all the active constraints and sides as specified by (𝜉, 𝜎) because they are active for all 𝜂 ∈ [0, 1]. Since the constraints
of (7) that are not in (𝜉, 𝜎) are inactive at 𝜂 = 0, there must exist 𝜂 > 0 such that 𝜁 (𝜂) is also feasible for (7). 𝜁 (𝜂) achieves a strictly smaller

objective than 𝜁 (0) = 𝜓 (𝑦, 𝑧;𝜃), which leads to a contradiction. □

Lemma B.2 establishes that given any feasible tuple of (𝑦, 𝑧;𝜃), one can find at least one pair of (𝜉, 𝜎) such that𝜓 (𝑦, 𝑧;𝜃) = ˆ𝜓 (𝑦, 𝑧;𝜃 ; 𝜉, 𝜎),
while there can be other (𝜉 ′, 𝜎′) that satisfies𝜓 (𝑦, 𝑧;𝜃) = ˆ𝜓 (𝑦, 𝑧;𝜃 ; 𝜉 ′, 𝜎′).

Lemma B.3. Suppose Assumption B.1 holds and 𝑝 ≥ 𝑑 . If both ˆ𝜓 (𝑦, 𝑧;𝜃 ; 𝜉, 𝜎) and ˆ𝜓 (𝑦′, 𝑧′;𝜃 ′; 𝜉, 𝜎) exist for 𝑦, 𝑧,𝑦′, 𝑧′ ∈ [0, 𝑥max]𝐻−1 and
(𝜉, 𝜎), then we have

 ˆ𝜓 (𝑦, 𝑧;𝜃 ; 𝜉, 𝜎)𝑡 − ˆ𝜓 (𝑦′, 𝑧′;𝜃 ′; 𝜉, 𝜎)𝑡

≤ 𝐶

(
𝜌𝑡

𝑦 − 𝑦′

 + 𝜌𝑝−𝑡

𝑧 − 𝑧′

) +𝐶 ©­«
𝑝∑︁
𝜏=0

𝜌 |𝑡−𝜏 |
��𝜇𝜏 − 𝜇′𝜏 �� + 𝑝+𝐻−1∑︁

𝜏=0

𝜌 |𝑡−𝜏 |

𝑤𝜏 −𝑤 ′𝜏

 + 𝑝+1∑︁

𝜏=0

𝜌 |𝑡−𝜏 |
��𝛿𝜏 − 𝛿 ′𝜏 ��ª®¬ , (10)

634

SODA: An Adaptive Bitrate Controller for Consistent High-Quality Video Streaming ACM SIGCOMM ’24, August 4–8, 2024, Sydney, NSW, Australia

where

𝜌 =
©­­«1 − 2

1 +
√︃

1 + (ℓ/𝑚𝑓)

ª®®¬
1

𝐻 (𝐻+𝑑)

,𝐶 =
2ℓ̄

𝑚𝑓 𝜌
(𝐻−2) (𝐻+𝑑) .

Here, ℓ B max{𝐻ℓ𝑐 , ℓ𝑤} and ℓ̄ B max{𝐻ℓ𝑓 , ℓ𝜇 , ℓ}.

Proof of Lemma B.3. We do a variable change to eliminate all constraints in the equality-constrained optimization problem. After the

elimination, we get an unconstrained optimization problem with the free variables 𝑥𝑡0 , 𝑥𝑡1 , . . . , 𝑥𝑡𝑞 where the indices satisfy 0 ≤ 𝑡0 < 𝑡1 <

. . . < 𝑡𝑞 ≤ 𝑝 . To simplify the notation, we let 𝑡−1 = −1 and 𝑡𝑞+1 = 𝑝 + 1. For 𝜏 that satisfies 𝑡𝑖 < 𝜏 < 𝑡𝑖+1, we have either 𝑥𝜏 = 𝑥𝑡𝑖 −
∑𝜏
𝛾=𝑡𝑖+1 𝛿𝛾

or 𝑥𝜏 is some constant. Without loss of generality, we can assume 𝑡𝑖+1 ≤ 𝑡𝑖 + 𝑑 + 𝐻 , because otherwise we can find 𝜏 ∈ (𝑡𝑖 , 𝑡𝑖+1 − 𝐻] such
that 𝑥𝜏 :𝜏+𝐻−1 are constants, which means the free variables after 𝑥𝑡𝑖+1 will not change, regardless of how we perturb 𝑦, and the free variables

before 𝑥𝑡𝑖 will not change, regardless of how we perturb 𝑧. Thus, we can decompose the perturbation to the left side and the right side and

derive them separately.

After the change of variable, the objective becomes a function
ˆℎ of 𝑥𝑡0 , 𝑥𝑡1 , . . . , 𝑥𝑡𝑞 . To simplify the notation, we let 𝑥𝜏 B 𝑥𝑡𝜏 , where

𝜏 = 0, . . . , 𝑞. We can decompose
ˆℎ as

ˆℎ(𝑥0:𝑞 ; 𝜁) = ˆℎ𝑎 (𝑥0:𝑞 ; 𝜇) + ˆℎ𝑏 (𝑥0:𝑞 ; 𝜁),

where 𝜁 = (𝑦, 𝑧, 𝜃), ˆℎ𝑎 is the sum of the original hitting costs minus

𝑚𝑓

2

𝑥0:𝑞

2

, and
ˆℎ𝑏 is the sum of the original switching costs plus

𝑚𝑓

2

𝑥0:𝑞

2

. By Assumption B.1, we see that

∇2

𝑥0:𝑞

ˆℎ𝑎 (𝑥0:𝑞 ; 𝜇) ⪰ 0, (𝑚𝑓 + 𝐻ℓ𝑐)𝐼 ⪰ ∇2

𝑥0:𝑞

ˆℎ𝑏 (𝑥0:𝑞 ; 𝜁) ⪰ 𝑚𝑓 𝐼 . (11)

We also note that ∇2

𝑥0:𝑞

ˆℎ𝑎 (𝑥0:𝑞 ; 𝜇) is a diagonal matrix and ∇2

𝑥0:𝑞

ˆℎ𝑏 (𝑥0:𝑞 ; 𝜁) is a 2𝐻 -banded matrix.

We can follow a similar procedure as Theorem 3.1 in [49] to show

 ˆ𝜓 (𝑦, 𝑧;𝜃 ; 𝜉, 𝜎)𝑡𝜏 − ˆ𝜓 (𝑦′, 𝑧′;𝜃 ′; 𝜉, 𝜎)𝑡𝜏

≤ 𝐶0

(
𝜌𝜏

0

𝑦 − 𝑦′

 + 𝜌𝑞−𝜏
0

𝑧 − 𝑧′

) +𝐶0

©­«
𝑝∑︁
𝑖=0

𝜌
|𝜙 (𝑖)−𝜏 |
0

��𝜇𝑖 − 𝜇′𝑖 �� + 𝑝+𝐻−1∑︁
𝑖=0

𝜌
|𝜙 (𝑖)−𝜏 |
0

𝑤𝑖 −𝑤 ′𝑖

 + 𝑝+1∑︁
𝑖=0

𝜌
|𝜙 (𝑖)−𝜏 |
0

𝛿𝑖 − 𝛿 ′𝑖

ª®¬ , (12)

where 𝜙 (𝑖) denotes the integer 𝑗 that satisfies 𝑡 𝑗 ≤ 𝑖 < 𝑡 𝑗+1 and

𝜌0 =
©­­«1 − 2√︃

1 + (ℓ/𝑚𝑓)

ª®®¬
1

𝐻

,𝐶0 =
2ℓ̄

𝑚𝑓 𝜌
𝐻−2

0

.

Here, ℓ B max{𝐻ℓ𝑐 , ℓ𝑤} and ℓ̄ B max{𝐻ℓ𝑓 , ℓ𝜇 , ℓ}. For completeness, we give the detailed proof below: Let 𝑒 be a vector such that both 𝜁 and

𝜁 + 𝑒 are in Y ×Z × Θ. Consider the function

𝜓 (𝜁 + 𝜂𝑒) B ˆ𝜓 (𝜁 + 𝜂𝑒; 𝜉, 𝜎)𝑡0:𝑞
,

which is implicitly determined by the equation

∇𝑥0:𝑞
ˆℎ(𝜓 (𝜁 + 𝜂𝑒), 𝜁 + 𝜂𝑒) = 0.

By the implicit function theorem we know that the function𝜓 is differentiable. Taking the derivative with respect to 𝜃 gives that

∇2

𝑥0:𝑞

ˆℎ(𝜓 (𝜁 + 𝜂𝑒), 𝜁 + 𝜂𝑒) 𝑑
𝑑𝜂
𝜓 (𝜁 + 𝜂𝑒) = − ∇𝑦∇𝑥0:𝑞

ˆℎ(𝜓 (𝜁 + 𝜂𝑒), 𝜁 + 𝜂𝑒)𝑒𝑦 − ∇𝑧∇𝑥0:𝑞
ˆℎ(𝜓 (𝜁 + 𝜂𝑒), 𝜁 + 𝜂𝑒)𝑒𝑧

−
𝑝∑︁
𝑡=0

∇𝜇𝑡∇𝑥0:𝑞
ˆℎ(𝜓 (𝜁 + 𝜂𝑒), 𝜁 + 𝜂𝑒)𝑒𝜇𝑡 −

𝑝+𝐻−1∑︁
𝑡=0

∇𝑤𝑡∇𝑥0:𝑞
ˆℎ(𝜓 (𝜁 + 𝜂𝑒), 𝜁 + 𝜂𝑒)𝑒𝑤𝑡

−
𝑝∑︁
𝑡=0

∇𝛿𝑡∇𝑥0:𝑞
ˆℎ(𝜓 (𝜁 + 𝜂𝑒), 𝜁 + 𝜂𝑒)𝑒𝛿𝑡 .

635

ACM SIGCOMM ’24, August 4–8, 2024, Sydney, NSW, Australia Chen et al.

To simplify the notation, we define

𝑀 B ∇2

𝑥0:𝑞

ˆℎ(𝜓 (𝜁 + 𝜂𝑒), 𝜁 + 𝜂𝑒),which is a (𝑞 + 1) × (𝑞 + 1) matrix,

𝑅 (𝑦) B −∇𝑦∇𝑥0:𝑞
ˆℎ(𝜓 (𝜁 + 𝜂𝑒), 𝜁 + 𝜂𝑒),which is a (𝑞 + 1) × (𝐻 − 1) matrix,

𝑅 (𝑧) B −∇𝑧∇𝑥0:𝑞
ˆℎ(𝜓 (𝜁 + 𝜂𝑒), 𝜁 + 𝜂𝑒),which is a (𝑞 + 1) × (𝐻 − 1) matrix,

𝑅 (𝜇𝑡) B −∇𝜇𝑡∇𝑥0:𝑞
ˆℎ(𝜓 (𝜁 + 𝜂𝑒), 𝜁 + 𝜂𝑒),which is a (𝑞 + 1) × 1 matrix,

𝑅 (𝑤𝑡) B −∇𝑤𝑡∇𝑥0:𝑞
ˆℎ(𝜓 (𝜁 + 𝜂𝑒), 𝜁 + 𝜂𝑒),which is a (𝑞 + 1) × 𝑑 matrix,

𝑅 (𝛿𝑡) B −∇𝛿𝑡∇𝑥0:𝑞
ˆℎ(𝜓 (𝜁 + 𝜂𝑒), 𝜁 + 𝜂𝑒),which is a (𝑞 + 1) × 1 matrix.

Hence we can write

𝑑

𝑑𝜃
𝜓 (𝜁 + 𝜂𝑒) = 𝑀−1 ©­«𝑅 (𝑦)𝑒𝑦 + 𝑅 (𝑧)𝑒𝑧 +

𝑝∑︁
𝑡=0

𝑅 (𝜇𝑡)𝑒𝜇𝑡 +
𝑝+𝐻−1∑︁
𝑡=0

𝑅 (𝑤𝑡)𝑒𝑤𝑡 +
𝑝∑︁
𝑡=0

𝑅 (𝛿𝑡)𝑒𝛿𝑡
ª®¬ .

Recall that 𝑅 (𝑦) , 𝑅 (𝑧) are (𝑞 + 1) × (𝐻 − 1) matrices. For 𝑅 (𝑦) , only the first 𝐻 − 1 rows are non-zero. For 𝑅 (𝑧) , only the last 𝐻 − 1 rows are

non-zero. Hence we see that

𝑑

𝑑𝜂
𝜓 (𝜁 + 𝜂𝑒)𝜏 = (𝑀−1)𝜏,0:𝐻−2𝑅

(𝑦)
0:𝐻−2,:

𝑒𝑦 + (𝑀−1)𝜏,𝑞−𝐻+2:𝑞𝑅
(𝑧)
𝑞−𝐻+2:𝑞,:

𝑒𝑧

+
𝑞∑︁
𝑗=0

𝑡 𝑗+1−1∑︁
𝑖=𝑡 𝑗

(𝑀−1)𝜏,𝑗𝑅 (𝜇𝑖)𝑗,:
𝑒𝜇𝑖 +

𝑞+1∑︁
𝑗=0

𝑡 𝑗+1−1∑︁
𝑖=𝑡 𝑗

(𝑀−1)𝜏,𝑗−𝐻+1:𝑗+𝐻−1𝑅
(𝑤𝑖)
𝑗−𝐻+1:𝑗+𝐻−1,:

𝑒𝑤𝑖

+
𝑞∑︁
𝑗=0

𝑡 𝑗+1−1∑︁
𝑖=𝑡 𝑗

(𝑀−1)𝜏,𝑗𝑅 (𝛿𝑖)𝑗,:
𝑒𝛿𝑖 . (13)

Recall that ℓ̄ B max{𝐻ℓ𝑐 , 𝐻ℓ𝑓 , ℓ𝜇 , ℓ𝑤}. We know that the norms of

𝑅
(𝑦)
0:𝐻−2,:

, 𝑅
(𝑧)
𝑞−𝐻+2:𝑞,:

, 𝑅
(𝜇𝑖)
𝑗,:

, 𝑅
(𝑤𝑖)
𝑗−𝐻+1:𝑗+𝐻−1,:

, and 𝑅
(𝛿𝑖)
𝑗,:

are all upper bounded by ℓ̄ . Taking norm on both sides of (13) gives

 𝑑𝑑𝜃𝜓 (𝜁 + 𝜂𝑒)𝜏

 ≤ ℓ̄

(𝑀−1)𝜏,0:𝐻−2

𝑒𝑦

 + ℓ̄

(𝑀−1)𝜏,𝑞−𝐻+2:𝑞

 ∥𝑒𝑧 ∥
+ ℓ̄

𝑞∑︁
𝑗=0

𝑡 𝑗+1−1∑︁
𝑖=𝑡 𝑗

(𝑀−1)𝜏,𝑗

𝑒𝜇𝑖

 + ℓ̄ 𝑞+1∑︁

𝑗=0

𝑡 𝑗+1−1∑︁
𝑖=𝑡 𝑗

(𝑀−1)𝜏,𝑗−𝐻+1:𝑗+𝐻−1

𝑒𝑤𝑖

+ ℓ̄

𝑞∑︁
𝑗=0

𝑡 𝑗+1−1∑︁
𝑖=𝑡 𝑗

(𝑀−1)𝜏,𝑗

𝑒𝛿𝑖

 . (14)

Note that𝑀 can be decomposed as𝑀 = 𝑀𝑎 +𝑀𝑏 , where

𝑀𝑎 := ∇2

𝑥0:𝑞

ˆℎ𝑎 (𝜓 (𝜁 + 𝜂𝑒), 𝜁 + 𝜂𝑒),

𝑀𝑏 := ∇2

𝑥0:𝑞

ˆℎ𝑏 (𝜓 (𝜁 + 𝜂𝑒), 𝜁 + 𝜂𝑒) .

Since𝑀𝑎 is a diagonal (𝑞 + 1) × (𝑞 + 1) matrix and satisfies𝑀𝑎 ⪰ 0, and𝑀𝑏 is 2𝐻 -banded and satisfies (𝑚𝑓 + ℓ)𝐼 ⪰ 𝑀𝑏 ⪰ 𝑚𝑓 𝐼 , we obtain

the following with Lemma B.1 in [49]:

(𝑀−1)𝜏,0:𝐻−2

 ≤ 2

𝑚𝑓

𝜌
𝜏−(𝐻−2)
0

,

(𝑀−1)𝜏,𝑞−𝐻+2:𝑞

 ≤ 2

𝑚𝑓

𝜌
𝑞−𝜏−(𝐻−2)
0

(𝑀−1)𝜏,𝑗

 ≤ 2

𝑚𝑓

𝜌
|𝜏− 𝑗 |
0

,

(𝑀−1)𝜏,𝑗−𝐻+1:𝑗+𝐻−1

 ≤ 2

𝑚𝑓

𝜌
|𝜏− 𝑗 |− (𝐻−1)
0

,

where 𝜌0 := (
√︁
𝑐𝑜𝑛𝑑 (𝑀𝑏) − 1)/(

√︁
𝑐𝑜𝑛𝑑 (𝑀𝑏) + 1) = 1 − 2 ·

(√︁
1 + (ℓ/𝜇) + 1

)−1

.

Substituting this into (14), we see that

 𝑑𝑑𝜃 𝜓 (𝜁 + 𝜃𝑒)𝜏

 ≤ 𝐶0

©­«𝜌𝜏0

𝑒𝑦

 + 𝜌𝑞−𝜏

0
∥𝑒𝑧 ∥ +

𝑝∑︁
𝑖=0

𝜌
|𝜙 (𝑖)−𝜏 |
0

𝑒𝜇𝑖

 + 𝑝+𝐻−1∑︁
𝑖=0

𝜌
|𝜙 (𝑖)−𝜏 |
0

𝑒𝑤𝑖

 + 𝑝∑︁
𝑖=0

𝜌
|𝜙 (𝑖)−𝜏 |
0

𝑒𝛿𝑖

ª®¬ .

636

SODA: An Adaptive Bitrate Controller for Consistent High-Quality Video Streaming ACM SIGCOMM ’24, August 4–8, 2024, Sydney, NSW, Australia

Hence we obtain

𝜓 (𝜁)𝜏 −𝜓 (𝜁 + 𝑒)𝜏

 =

∫ 1

0

𝑑

𝑑𝜂
𝜓 (𝜁 + 𝜂𝑒)𝜏𝑑𝜂

≤

∫
1

0

 𝑑𝑑𝜂𝜓 (𝜁 + 𝜂𝑒)𝜏

𝑑𝜂
≤ 𝐶0

©­«𝜌𝜏0

𝑒𝑦

 + 𝜌𝑞−𝜏

0
∥𝑒𝑧 ∥ +

𝑝∑︁
𝑖=0

𝜌
|𝜙 (𝑖)−𝜏 |
0

𝑒𝜇𝑖

 + 𝑝+𝐻−1∑︁
𝑖=0

𝜌
|𝜙 (𝑖)−𝜏 |
0

𝑒𝑤𝑖

 + 𝑝∑︁
𝑖=0

𝜌
|𝜙 (𝑖)−𝜏 |
0

𝑒𝛿𝑖

ª®¬ .
This finishes the proof of (12). Recall that we have 𝑡𝑖 < 𝑡𝑖+1 ≤ 𝑡𝑖 + 𝑑 + 𝐻 . Therefore, (12) implies (10). □

In the next lemma, we show a continuity property of the “equality-constrained labeling” method.

Lemma B.4. Suppose Assumption B.1 holds and 𝑝 ≥ 𝑑 . For a pair of (𝜉, 𝜎), if any tuple in the sequence {(𝑦𝑞, 𝑧𝑞 ;𝜃𝑞)}∞𝑞=1
satisfies𝜓 (𝑦𝑞, 𝑧𝑞 ;𝜃𝑞) =

ˆ𝜓 (𝑦𝑞, 𝑧𝑞 ;𝜃𝑞 ; 𝜉, 𝜎) and lim𝑞→∞ (𝑦𝑞, 𝑧𝑞, 𝜃𝑞) = (𝑦, 𝑧, 𝜃), then we have

𝜓 (𝑦, 𝑧;𝜃) = ˆ𝜓 (𝑦, 𝑧;𝜃 ; 𝜉, 𝜎).

Proof of Lemma B.4. Note that the perturbation bound in Lemma B.3 also establishes the continuity of the function
ˆ𝜓 (·, ·; ·; 𝜉, 𝜎).

Therefore, we see that

lim

𝑞→∞
𝜓 (𝑦𝑞, 𝑧𝑞 ;𝜃𝑞) = lim

𝑞→∞
ˆ𝜓 (𝑦𝑞, 𝑧𝑞 ;𝜃𝑞 ; 𝜉, 𝜎) = ˆ𝜓 (𝑦, 𝑧;𝜃 ; 𝜉, 𝜎).

Since the constraint set of (7) is closed, we know
ˆ𝜓 (𝑦, 𝑧;𝜃 ; 𝜉, 𝜎) is a feasible solution of (7).

For the sake of contradiction, we assume𝜓 (𝑦, 𝑧;𝜃) ≠ ˆ𝜓 (𝑦, 𝑧;𝜃 ; 𝜉, 𝜎). In this case, since
ˆ𝜓 (𝑦, 𝑧;𝜃 ; 𝜉, 𝜎) is feasible for (7), we must have

𝜄 (𝑦, 𝑧;𝜃) < 𝜄 (𝑦, 𝑧;𝜃 ; 𝜉, 𝜎) .
Define the optimality gap as Λ B 𝜄 (𝑦, 𝑧;𝜃 ; 𝜉, 𝜎) − 𝜄 (𝑦, 𝑧;𝜃).

Since lim𝑞→∞ (𝑦𝑞, 𝑧𝑞 ;𝜃𝑞) = (𝑦, 𝑧;𝜃), for an arbitrary small positive real number 𝜖 , we can find a positive integer 𝑞 such that

𝑦𝑞 − 𝑦

 +

𝑧𝑞 − 𝑧

 + 𝑑𝑖𝑠𝑡 (𝜃, 𝜃𝑞) < 𝜖,
where 𝑑𝑖𝑠𝑡 (𝜃, 𝜃 ′) = ∑𝑝

𝑖=0

��𝜇𝑖 − 𝜇′𝑖 �� +∑𝑝+𝐻−1

𝑖=0

𝑤𝑖 −𝑤 ′𝑖

 +∑𝑝+1
𝑖=0

��𝛿𝑖 − 𝛿 ′𝑖 �� . Based on 𝑥−𝐻+1:𝑝+𝐻−1 B 𝜓 (𝑦, 𝑧;𝜃), we construct a feasible solution
𝑥 ′−𝐻+1:𝑝+𝐻−1

C 𝑥 ′ for the optimization problem (7) with parameters (𝑦𝑞, 𝑧𝑞 ;𝜃𝑞) as following: Let 𝑥 ′
0:𝑝

= 𝑥0:𝑝 , 𝑥−𝐻+1:−1 = 𝑦, 𝑥𝑝+1:𝑝+𝐻−1 = 𝑧.

For 𝑡 = 0, 1, . . ., if 𝑥 ′𝑡 −𝑥 ′𝑡−1
< −𝛿 (𝑞)𝑡 , we increase 𝑥 ′𝑡 such that 𝑥 ′𝑡 = 𝑥

′
𝑡−1
−𝛿 (𝑞)𝑡 . Then, for 𝑡 = 𝑝, 𝑝 − 1, . . ., if 𝑥 ′

𝑡+1 −𝑥
′
𝑡 < −𝛿

(𝑞)
𝑡+1 , we decrease 𝑥

′
𝑡

such that 𝑥 ′𝑡 = 𝑥
′
𝑡+1 + 𝛿

(𝑞)
𝑡+1 . Note that this procedure can guarantee that 𝑥 ′ is a feasible solution for (7), and their distance are upper bounded

by

𝜓 (𝑦, 𝑧;𝜃) − 𝑥 ′

 ≤ (2𝑑 + 1)𝜖. (15)

Since the objective function of (7) is Lipschitz in (𝑥,𝑦, 𝑧, 𝜃), by (15), we know there exists some positive constant 𝑐0 such that

𝜄 (𝑦𝑞, 𝑧𝑞 ;𝜃𝑞) − 𝜄 (𝑦, 𝑧;𝜃) ≤ 𝑐0

(

𝑥 ′ −𝜓 (𝑦, 𝑧;𝜃)

 + 𝜖) ≤ (2𝑑 + 2)𝑐0𝜖. (16)

On the other hand, by Lemma B.3, we see that

 ˆ𝜓 (𝑦𝑞, 𝑧𝑞 ;𝜃𝑞 ; 𝜉, 𝜎) − ˆ𝜓 (𝑦, 𝑧;𝜃 ; 𝜉, 𝜎)

 ≤ (

𝐶

1 − 𝜌 + 1

)
𝜖. (17)

Since the objective function of (7) is smooth in (𝑥,𝑦, 𝑧, 𝜃), by (17), we see that��𝜄 (𝑦𝑞, 𝑧𝑞 ;𝜃𝑞 ; 𝜉, 𝜎) − 𝜄 (𝑦, 𝑧;𝜃 ; 𝜉, 𝜎)
�� ≤ 𝑐0

(
𝐶

1 − 𝜌 + 2

)
𝜖. (18)

Therefore, we see that

𝜄 (𝑦𝑞, 𝑧𝑞 ;𝜃𝑞 ; 𝜉, 𝜎) − 𝜄 (𝑦𝑞, 𝑧𝑞 ;𝜃𝑞) ≥ −
��𝜄 (𝑦𝑞, 𝑧𝑞 ;𝜃𝑞 ; 𝜉, 𝜎) − 𝜄 (𝑦, 𝑧;𝜃 ; 𝜉, 𝜎)

�� + (𝜄 (𝑦, 𝑧;𝜃 ; 𝜉, 𝜎) − 𝜄 (𝑦, 𝑧;𝜃)) + (𝜄 (𝑦, 𝑧;𝜃) − 𝜄 (𝑦𝑞, 𝑧𝑞 ;𝜃𝑞))

≥ − 𝑐0

(
𝐶

1 − 𝜌 + 2

)
𝜖 + Λ − 𝑐0 (2𝑑 + 2)𝜖 (19a)

= Λ − 𝑐0

(
𝐶

1 − 𝜌 + 2𝑑 + 4

)
𝜖,

where we used (16) and (18) in (19a). Let 𝜖 B 1

2
Λ𝑐−1

0

(
𝐶

1−𝜌 + 2𝑑 + 4

)−1

leads to a contradiction with the assumption that 𝜄 (𝑦𝑞, 𝑧𝑞 ;𝜃𝑞 ; 𝜉, 𝜎) =
𝜄 (𝑦𝑞, 𝑧𝑞 ;𝜃𝑞). Therefore, we have shown that𝜓 (𝑦, 𝑧;𝜃) = ˆ𝜓 (𝑦, 𝑧;𝜃 ; 𝜉, 𝜎). □

With the above technical lemmas, we are ready to finish the proof of Theorem B.1.

637

ACM SIGCOMM ’24, August 4–8, 2024, Sydney, NSW, Australia Chen et al.

Proof of Theorem B.1. Consider the segment ((1 − 𝜂)𝑦 + 𝜂𝑦′, (1 − 𝜂)𝑧 + 𝜂𝑧′; (1 − 𝜂)𝜃 + 𝜂𝜃 ′) , 𝜂 ∈ [0, 1]. Note that since (1−𝜂)𝜓 (𝑦, 𝑧;𝜃)+
𝜂𝜓 (𝑦′, 𝑧′;𝜃 ′) is a feasible solution for the optimization problem (7) parameterized by(

(1 − 𝜂)𝑦 + 𝜂𝑦′, (1 − 𝜂)𝑧 + 𝜂𝑧′; (1 − 𝜂)𝜃 + 𝜂𝜃 ′
)
,

we know that the corresponding optimization problem is feasible. With some slight abuse of notation, we use (𝜉, 𝜎) (𝜂) ⊆ Ξ × Σ to denote

the set of indicators of active constraints and sides such that

𝜓
(
(1 − 𝜂)𝑦 + 𝜂𝑦′, (1 − 𝜂)𝑧 + 𝜂𝑧′; (1 − 𝜂)𝜃 + 𝜂𝜃 ′

)
= ˆ𝜓

(
(1 − 𝜂)𝑦 + 𝜂𝑦′, (1 − 𝜂)𝑧 + 𝜂𝑧′; (1 − 𝜂)𝜃 + 𝜂𝜃 ′; 𝜉, 𝜎

)
,∀(𝜉, 𝜎) ∈ (𝜉, 𝜎) (𝜂) .

By Lemma B.2, we know this set is not empty for any 𝜂 ∈ [0, 1].
We can divide the interval [0, 1] into 0 = 𝜂0 < 𝜂1 < . . . < 𝜂𝑞 = 1 for some positive integer 𝑞 ≤ 2

5𝑝+6
such that there exists a sequence of

different indicators of active constraints and sides (𝜉, 𝜎)0:𝑞−1 which satisfies

𝜓
(
(1 − 𝜂𝑖) (𝑦, 𝑧;𝜃) + 𝜂𝑖 (𝑦′, 𝑧′;𝜃 ′)

)
= ˆ𝜓

(
(1 − 𝜂𝑖) (𝑦, 𝑧;𝜃) + 𝜂𝑖 (𝑦′, 𝑧′;𝜃 ′); (𝜉, 𝜎)𝑖

)
,

𝜓
(
(1 − 𝜂𝑖+1) (𝑦, 𝑧;𝜃) + 𝜂𝑖+1 (𝑦′, 𝑧′;𝜃 ′)

)
= ˆ𝜓

(
(1 − 𝜂𝑖+1) (𝑦, 𝑧;𝜃) + 𝜂𝑖+1 (𝑦′, 𝑧′;𝜃 ′); (𝜉, 𝜎)𝑖

)
for all 0 ≤ 𝑖 ≤ 𝑞 − 1. Note that this requires (𝜉, 𝜎) (𝜂𝑖) to contain both (𝜉, 𝜎)𝑖−1 and (𝜉, 𝜎)𝑖 for 𝑖 = 1, . . . , 𝑞 − 1. To construct the sequence 𝜂0:𝑞

and (𝜉, 𝜎)0:𝑞−1, we first have 𝜂0 = 0 and let (𝜉, 𝜎)0 be any pair (𝜉, 𝜎) ∈ (𝜉, 𝜎) (𝜂0) such that

sup{𝜂 ∈ [0, 1] | 𝜓
(
(1 − 𝜂) (𝑦, 𝑧;𝜃) + 𝜂 (𝑦′, 𝑧′;𝜃 ′)

)
= ˆ𝜓

(
(1 − 𝜂) (𝑦, 𝑧;𝜃) + 𝜂 (𝑦′, 𝑧′;𝜃 ′); 𝜉, 𝜎

)
} > 0,

and let 𝜂1 be the supremum value above. Since 0 = inf (0, 1] and (𝜉, 𝜎) (𝜂) ⊆ Ξ × Σ is nonempty for every 𝜂 ∈ (0, 1], we know such (𝜉, 𝜎)0
exists by Lemma B.4. Suppose we have already constructed 𝜂0:𝑖 , (𝜉, 𝜎)0:𝑖−1, and 𝜂𝑖 < 1. Then we select (𝜉, 𝜎)𝑖 to be any pair (𝜉, 𝜎) such that

sup{𝜂 ∈ [0, 1] | 𝜓
(
(1 − 𝜂) (𝑦, 𝑧;𝜃) + 𝜂 (𝑦′, 𝑧′;𝜃 ′)

)
= ˆ𝜓

(
(1 − 𝜂) (𝑦, 𝑧;𝜃) + 𝜂 (𝑦′, 𝑧′;𝜃 ′); 𝜉, 𝜎

)
} > 𝜂𝑖 ,

and let 𝜂𝑖+1 be the supremum value above. We can repeat this construction and stop when 𝜂𝑖+1 = 1. By the construction, we know all pairs

in the sequence (𝜉, 𝜎)0:𝑖−1 are distinct, thus the construction will terminate in finite time. Hence, we have a finite index 𝑞 such that 𝜂𝑞 = 1.

By Lemma B.3, we know that

𝜓 (
(1 − 𝜂𝑖) (𝑦, 𝑧;𝜃) + 𝜂𝑖 (𝑦′, 𝑧′;𝜃 ′)

)
𝑡 −𝜓

(
(1 − 𝜂𝑖+1) (𝑦, 𝑧;𝜃) + 𝜂𝑖+1 (𝑦′, 𝑧′;𝜃 ′)

)
𝑡

≤ (𝜂𝑖+1 − 𝜂𝑖)𝐶

(
𝜌𝑡

𝑦 − 𝑦′

 + 𝜌𝑝−𝑡

𝑧 − 𝑧′

) + (𝜂𝑖+1 − 𝜂𝑖)𝐶 ©­«
𝑝∑︁
𝜏=0

𝜌 |𝑡−𝜏 |
��𝜇𝜏 − 𝜇′𝜏 �� + 𝑝+𝐻−1∑︁

𝜏=0

𝜌 |𝑡−𝜏 |

𝑤𝜏 −𝑤 ′𝜏

 + 𝑝+1∑︁

𝜏=0

𝜌 |𝑡−𝜏 |

𝛿𝜏 − 𝛿 ′𝜏

ª®¬ . (20)

Summing (20) over 𝑖 = 0, 1, . . . , 𝑞 − 1 finishes the proof. □

C PROOFS FOR EXACT PREDICTIONS
C.1 Proof of Lemma A.4
To simplify the notation, we introduce the shorthand

𝑥∗
𝜏 |𝑡 = 𝜓

𝑁
𝑡 ((𝑥𝑡−1, 𝑢𝑡−1);𝜔𝑡 :𝑁 ; 0)𝑥𝜏 , 𝑢

∗
𝜏 |𝑡 = 𝜓

𝑁
𝑡 ((𝑥𝑡−1, 𝑢𝑡−1);𝜔𝑡 :𝑁 ; 0)𝑢𝜏 ,∀𝜏 ≥ 𝑡 .

And we use {(𝑥∗𝑡 , 𝑢∗𝑡)}𝑁𝑡=1
to denote the offline optimal trajectory.

For time step 𝑡 < 𝑁 − 𝐾 + 1, we see that���𝑥𝑡 −𝜓𝑁𝑡 ((𝑥𝑡−1, 𝑢𝑡−1);𝜔𝑡 :𝑁 ; 0)𝑥𝑡
���2

≤
(
𝐶𝜌𝐾

���𝑥∗𝑡+𝐾 |𝑡 − 𝑥 ��� +𝐶𝜌𝐾−1

����𝑢∗𝑡+𝐾−1 |𝑡 −
1

𝜔𝑡+𝐾−1

����)2

(21a)

≤
(
𝐶𝜌𝐾

(���𝑥∗𝑡+𝐾 |𝑡 − 𝑥∗𝑡+𝐾 ��� + ��𝑥∗𝑡+𝐾 − 𝑥 ��) +𝐶𝜌𝐾−1

(���𝑢∗𝑡+𝐾−1 |𝑡 − 𝑢
∗
𝑡+𝐾−1

��� + ����𝑢∗𝑡+𝐾−1
− 1

𝜔𝑡+𝐾−1

����))2

(21b)

≤ 4𝐶2𝜌2𝐾
���𝑥∗𝑡+𝐾 |𝑡 − 𝑥∗𝑡+𝐾 ���2 + 4𝐶2𝜌2𝐾−2

���𝑢∗𝑡+𝐾−1 |𝑡 − 𝑢
∗
𝑡+𝐾−1

���2 + 4𝐶2𝜌2𝐾
��𝑥∗𝑡+𝐾−1

− 𝑥
��2 +

+ 4𝐶2𝜌2𝐾−2

����𝑢∗𝑡+𝐾−1
− 1

𝜔𝑡+𝐾−1

����2 . (21c)

638

SODA: An Adaptive Bitrate Controller for Consistent High-Quality Video Streaming ACM SIGCOMM ’24, August 4–8, 2024, Sydney, NSW, Australia

where in (21a), we use

𝑥𝑡 = 𝜓
𝑡+𝐾−1

𝑡

(
(𝑥𝑡−1, 𝑢𝑡−1);𝜔𝑡 :𝑡+𝐾−1; (𝑥, 1

𝜔𝑡+𝐾−1

)
)
𝑥𝑡

,

𝜓𝑁𝑡 ((𝑥𝑡−1, 𝑢𝑡−1);𝜔𝑡 :𝑁 ; 0)𝑥𝑡 = 𝜓
𝑡+𝐾−1

𝑡

(
(𝑥𝑡−1, 𝑢𝑡−1);𝜔𝑡 :𝑡+𝐾−1; (𝑥∗

𝑡+𝐾 |𝑡 , 𝑢
∗
𝑡+𝐾−1 |𝑡)

)
𝑥𝑡
,

and the exponentially decaying perturbation bound. We use the triangle inequality in (21b) and rearrange the terms in (21c).

We note that for the first term in (21), we have���𝑥∗𝑡+𝐾 |𝑡 − 𝑥∗𝑡+𝐾 ��� ≤ 𝐶𝜌𝐾+1 (��𝑥𝑡−1 − 𝑥∗𝑡−1

�� + ��𝑢𝑡−1 − 𝑢∗𝑡−1

��) . (22)

For the second term, we have ���𝑢∗𝑡+𝐾−1 |𝑡 − 𝑢
∗
𝑡+𝐾−1

��� ≤ 𝐶′𝜌𝐾 (��𝑥𝑡−1 − 𝑥∗𝑡−1

�� + ��𝑢𝑡−1 − 𝑢∗𝑡−1

��) . (23)

For the third term, we have ��𝑥∗𝑡+𝐾 − 𝑥 ��2 ≤ 1

𝜖𝛽
𝑏 (𝑥∗𝑡+𝐾). (24)

For the last term, we see that����𝑢∗𝑡+𝐾−1
− 1

𝜔𝑡+𝐾−1

����2 ≤ (𝑥∗𝑡+𝐾−1
− 𝑥∗

𝑡+𝐾−2
)2

𝜔2

𝑡+𝐾−1

≤
2(𝑥∗

𝑡+𝐾−1
− 𝑥)2 + 2(𝑥 − 𝑥∗

𝑡+𝐾−2
)2

𝜔2

𝑡+𝐾−1

≤
2𝑏 (𝑥∗

𝑡+𝐾−1
) + 2𝑏 (𝑥∗

𝑡+𝐾−2
)

𝜖𝛽𝜔2

min

. (25)

Substituting (22), (23), (24), (25) into (21) gives that���𝑥𝑡 −𝜓𝑁𝑡 ((𝑥𝑡−1, 𝑢𝑡−1);𝜔𝑡 :𝑁 ; 0)𝑥𝑡
���2 ≤ 8𝐶4𝜌4𝐾+2

(��𝑥𝑡−1 − 𝑥∗𝑡−1

��2 + ��𝑢𝑡−1 − 𝑢∗𝑡−1

��2) + 8(𝐶′)2𝐶2𝜌4𝐾−2

(��𝑥𝑡−1 − 𝑥∗𝑡−1

��2 + ��𝑢𝑡−1 − 𝑢∗𝑡−1

��2)
+ 4𝐶2𝜌2𝐾−2

(2 + 𝜔2

min
)𝑏 (𝑥∗

𝑡+𝐾−1
) + 2𝑏 (𝑥∗

𝑡+𝐾−2
)

𝜖𝛽𝜔2

min

(26)

Similarly, we can obtain that���𝑢𝑡 −𝜓𝑁𝑡 ((𝑥𝑡−1, 𝑢𝑡−1);𝜔𝑡 :𝑁 ; 0)𝑢𝑡
���2 ≤ 8(𝐶′)2𝐶2𝜌4𝐾+2

(��𝑥𝑡−1 − 𝑥∗𝑡−1

��2 + ��𝑢𝑡−1 − 𝑢∗𝑡−1

��2) + 8(𝐶′)4𝜌4𝐾−2

(��𝑥𝑡−1 − 𝑥∗𝑡−1

��2 + ��𝑢𝑡−1 − 𝑢∗𝑡−1

��2)
+ 4(𝐶′)2𝜌2𝐾−2

(2 + 𝜔2

min
)𝑏 (𝑥∗

𝑡+𝐾−1
) + 2𝑏 (𝑥∗

𝑡+𝐾−2
)

𝜖𝛽𝜔2

min

(27)

Therefore, combining (26) and (27) gives that

𝑒2

𝑡 ≤ 2

���𝑥𝑡 −𝜓𝑁𝑡 ((𝑥𝑡−1, 𝑢𝑡−1);𝜔𝑡 :𝑁 ; 0)𝑥𝑡
���2 + 2

���𝑢𝑡 −𝜓𝑁𝑡 ((𝑥𝑡−1, 𝑢𝑡−1);𝜔𝑡 :𝑁 ; 0)𝑢𝑡
���2

≤ 16𝜌4𝐾−2

(
𝐶2 + (𝐶′)2

)
2
(��𝑥𝑡−1 − 𝑥∗𝑡−1

��2 + ��𝑢𝑡−1 − 𝑢∗𝑡−1

��2) + 8𝜌2𝐾−2

(
𝐶2 + (𝐶′)2

) (2 + 𝜔2

min
)𝑏 (𝑥∗

𝑡+𝐾−1
) + 2𝑏 (𝑥∗

𝑡+𝐾−2
)

𝜖𝜔2

min

.

C.2 Proof of Lemma A.5
We see the distance between the trajectories of SODA and the offline optimal at an intermediate time step can be bounded by��𝑥𝑡 − 𝑥∗𝑡 �� + ��𝑢𝑡 − 𝑢∗𝑡 �� = ���𝑥𝑡 −𝜓𝑁1 ((𝑥0, 𝑢0);𝜔1:𝑁 ; 0)𝑥𝑡

��� + ���𝑢𝑡 −𝜓𝑁1 ((𝑥0, 𝑢0);𝜔1:𝑁 ; 0)𝑢𝑡
���

≤
���𝑥𝑡 −𝜓𝑁𝑡 ((𝑥𝑡−1, 𝑢𝑡−1);𝜔𝑡 :𝑁 ; 0)𝑥𝑡

��� + ���𝑢𝑡 −𝜓𝑁𝑡 ((𝑥𝑡−1, 𝑢𝑡−1);𝜔𝑡 :𝑁 ; 0)𝑢𝑡
���

+
𝑡−1∑︁
𝜏=1

���𝜓𝑁𝜏 ((𝑥𝜏−1, 𝑢𝜏−1);𝜔𝜏 :𝑁 ; 0)𝑥𝑡 −𝜓
𝑁
𝜏+1 ((𝑥𝜏 , 𝑢𝜏);𝜔𝜏+1:𝑁 ; 0)𝑥𝑡

���
+
𝑡−1∑︁
𝜏=1

���𝜓𝑁𝜏 ((𝑥𝜏−1, 𝑢𝜏−1);𝜔𝜏 :𝑁 ; 0)𝑢𝑡 −𝜓
𝑁
𝜏+1 ((𝑥𝜏 , 𝑢𝜏);𝜔𝜏+1:𝑁 ; 0)𝑢𝑡

��� (28a)

≤ 𝑒𝑡 + (𝐶 +𝐶′)
𝑡−1∑︁
𝜏=1

𝜌𝑡−𝜏𝑒𝜏 . (28b)

639

ACM SIGCOMM ’24, August 4–8, 2024, Sydney, NSW, Australia Chen et al.

Weuse the triangle inequality in (28a). In (28b), we note that𝜓𝑁𝜏 ((𝑥𝜏−1, 𝑢𝜏−1);𝜔𝜏 :𝑁 ; 0)𝑥𝑡 can bewritten as𝜓
𝑁
𝜏+1

(
(𝑥∗
𝜏 |𝜏−1

, 𝑢∗
𝜏 |𝜏−1

);𝜔𝜏+1:𝑁 ; 0
)
𝑥𝑡
,

where

𝑥∗
𝜏 |𝜏−1

= 𝜓𝑁𝜏 ((𝑥𝜏−1, 𝑢𝜏−1);𝜔𝜏 :𝑁 ; 0)𝑥𝜏 , and 𝑢
∗
𝜏 |𝜏−1

= 𝜓𝑁𝜏 ((𝑥𝜏−1, 𝑢𝜏−1);𝜔𝜏 :𝑁 ; 0)𝑢𝜏 .

Thus, we can apply the exponentially decaying perturbation bound and Lemma A.4 to obtain���𝜓𝑁𝜏 ((𝑥𝜏−1, 𝑢𝜏−1);𝜔𝜏 :𝑁 ; 0)𝑥𝑡 −𝜓
𝑁
𝜏+1 ((𝑥𝜏 , 𝑢𝜏);𝜔𝜏+1:𝑁 ; 0)𝑥𝑡

��� ≤ 𝐶𝜌𝑡−𝜏𝑒𝜏 .
Similarly, we obtain that ���𝜓𝑁𝜏 ((𝑥𝜏−1, 𝑢𝜏−1);𝜔𝜏 :𝑁 ; 0)𝑢𝑡 −𝜓

𝑁
𝜏+1 ((𝑥𝜏 , 𝑢𝜏);𝜔𝜏+1:𝑁 ; 0)𝑢𝑡

��� ≤ 𝐶′𝜌𝑡−𝜏𝑒𝜏 .
Therefore, we see that ��𝑥𝑡 − 𝑥∗𝑡 ��2 + ��𝑢𝑡 − 𝑢∗𝑡 ��2 ≤ (

1 + (𝐶 +𝐶
′)2

1 − 𝜌

) 𝑡∑︁
𝜏=1

𝜌𝑡−𝜏𝑒2

𝜏 .

Summing the above inequality over 𝑡 = 1, 2, . . . ,𝑇 gives that

𝑁∑︁
𝑡=1

(��𝑥𝑡 − 𝑥∗𝑡 ��2 + ��𝑢𝑡 − 𝑢∗𝑡 ��2) ≤ 1

1 − 𝜌 ·
(
1 + (𝐶 +𝐶

′)2
1 − 𝜌

) 𝑁∑︁
𝑡=1

𝑒2

𝑡 .

C.3 Proof of Theorem A.3
Combining Lemmas A.4 and A.5, we see that

𝑁∑︁
𝑡=1

(��𝑥𝑡 − 𝑥∗𝑡 ��2 + ��𝑢𝑡 − 𝑢∗𝑡 ��2) ≤ 1

1 − 𝜌 ·
(
1 + (𝐶 +𝐶

′)2
1 − 𝜌

)
· 16𝜌4𝐾−2

(
𝐶2 + (𝐶′)2

)
2
𝑁∑︁
𝑡=1

(��𝑥𝑡−1 − 𝑥∗𝑡−1

��2 + ��𝑢𝑡−1 − 𝑢∗𝑡−1

��2)
+ 1

1 − 𝜌 ·
(
1 + (𝐶 +𝐶

′)2
1 − 𝜌

)
· 8𝜌2𝐾−2

(
𝐶2 + (𝐶′)2

) (4 + 𝜔2

min
)∑𝑁

𝑡=1
𝑏 (𝑥∗𝑡)

𝜖𝛽𝜔2

min

. (29)

Since the prediction horizon 𝐾 satisfies

𝐾 ≥ 1

4

ln

(
16

1 − 𝜌 ·
(
1 + (𝐶 +𝐶

′)2
1 − 𝜌

)
·
(
𝐶2 + (𝐶′)2

)
2

)
/ln

(
1

𝜌

)
,

we see that

𝑁∑︁
𝑡=1

(��𝑥𝑡 − 𝑥∗𝑡 ��2 + ��𝑢𝑡 − 𝑢∗𝑡 ��2) ≤ 16𝜌2𝐾−2

1 − 𝜌 ·
(
1 + (𝐶 +𝐶

′)2
1 − 𝜌

) (
𝐶2 + (𝐶′)2

) (4 + 𝜔2

min
)∑𝑁

𝑡=1
𝑏 (𝑥∗𝑡)

𝜖𝜔2

min

. (30)

On the other hand, we also see that for any 𝜂 > 0, we have

cost(SODA) =
𝑁∑︁
𝑡=1

𝜔𝑡𝑢
2

𝑡 + 𝑏 (𝑥𝑡) + 𝛾 (𝑢𝑡 − 𝑢𝑡−1)2

=

𝑁∑︁
𝑡=1

𝜔𝑡 (𝑢∗𝑡 + (𝑢𝑡 − 𝑢∗𝑡))2 +
𝑁∑︁
𝑡=1

𝑏 (𝑥∗𝑡 + (𝑥𝑡 − 𝑥∗𝑡))

+
𝑁∑︁
𝑡=1

𝛾 (𝑢∗𝑡 − 𝑢∗𝑡−1
+ (𝑢𝑡 − 𝑢∗𝑡) − (𝑢𝑡−1 − 𝑢∗𝑡−1

))2

≤ (1 + 𝜂)
𝑁∑︁
𝑡=1

(
𝜔𝑡 (𝑢∗𝑡)2 + 𝑏 (𝑥∗𝑡) + 𝛾 (𝑢∗𝑡 − 𝑢∗𝑡−1

)2
)

+
(
1 + 1

𝜂

) 𝑁∑︁
𝑡=1

(
𝜔𝑡 (𝑢∗𝑡 − 𝑢𝑡)2 + 𝛽 (𝑥∗𝑡 − 𝑥𝑡)2 + 2𝛾 (𝑢∗𝑡 − 𝑢𝑡)2 + 2𝛾 (𝑢∗𝑡−1

− 𝑢𝑡−1)2
)

(31a)

≤ (1 + 𝜂)cost(OPT) +
(
1 + 1

𝜂

)
(4𝛾 + 𝛽 + 𝜔max)

𝑁∑︁
𝑡=1

(��𝑥𝑡 − 𝑥∗𝑡 ��2 + ��𝑢𝑡 − 𝑢∗𝑡 ��2) , (31b)

where we use the quadratic form of the cost functions and the AM-GM inequality in (31a); we use (30) in (31b).

640

SODA: An Adaptive Bitrate Controller for Consistent High-Quality Video Streaming ACM SIGCOMM ’24, August 4–8, 2024, Sydney, NSW, Australia

Substituting (30) into (31) gives that

cost(SODA) − cost(OPT) ≤
(
𝜂 +

(
1 + 1

𝜂

)
(4𝛾 + 𝛽 + 𝜔max) ·

16𝜌2𝐾−2

1 − 𝜌 ·
(
1 + (𝐶 +𝐶

′)2
1 − 𝜌

) (
𝐶2 + (𝐶′)2

)
·

4 + 𝜔2

min

𝜖𝛽𝜔2

min

)
cost(OPT) .

Letting 𝜂 = 4

(
2(4𝛾 + 𝛽 + 𝜔max) · 1

1−𝜌 ·
(
1 + (𝐶+𝐶

′)2
1−𝜌

) (
𝐶2 + (𝐶′)2

)
· 4+𝜔2

min

𝜖𝛽𝜔2

min

)
1/2

finishes the proof.

D PROOFS FOR INEXACT PREDICTIONS
D.1 Proof of Lemma A.6
Suppose {𝑥𝑡 }1≤𝑡≤𝑁 is a feasible trajectory of the buffer levels and {𝑥𝑡 }𝑡1≤𝑡≤𝑡2 is a sub-trajectory such that 𝑥𝑡1−1 ≥ 𝑥 − 𝜁 , 𝑥𝑡 < 𝑥 − 𝜁 ,∀𝑡 =
𝑡1, . . . , 𝑡2, and 𝑥𝑡2+1 ≥ 𝑥 − 𝜁 where 1 ≤ 𝑡1 < 𝑡2 < 𝑁 .

For 𝜆 ≥ 0, consider the trajectory {𝑥 ′𝑡 (𝜆)}1≤𝑡≤𝑁 constructed by

𝑥 ′𝑡 (𝜆) =
{
𝑥𝑡 , if 𝑡 < 𝑡1 or 𝑡 > 𝑡2

𝑥𝑡 + 𝜆, otherwise.

Note that under this construction, {𝑥 ′𝑡 (0)}1≤𝑡≤𝑁 is identical with the original trajectory {𝑥𝑡 }1≤𝑡≤𝑁 . Let Υ(𝜆) denote the total cost of this
trajectory. For sufficiently small 𝜆 ≥ 0, we see that

Υ(𝜆) − Υ(0) = 𝛽
𝑡2∑︁
𝑡=𝑡1

(
(𝑥𝑡 + 𝜆 − 𝑥)2 − (𝑥𝑡 − 𝑥)2

)
+ 𝜔𝑡1

(
𝑢′𝑡1 (𝜆)

2 − 𝑢2

𝑡1

)
+ 𝜔𝑡2+1

(
𝑢′𝑡2+1 (𝜆)

2 − 𝑢2

𝑡2+1
)

+ 𝛾
(
(𝑢′𝑡1 (𝜆) − 𝑢𝑡1−1)2 − (𝑢𝑡1 − 𝑢𝑡1−1)2

)
+ 𝛾

(
(𝑢𝑡1+1 − 𝑢′𝑡1 (𝜆))

2 − (𝑢𝑡1+1 − 𝑢𝑡1)2
)

+ 𝛾
(
(𝑢′𝑡2+1 (𝜆) − 𝑢𝑡2)

2 − (𝑢𝑡2+1 − 𝑢𝑡2)2
)
+ 𝛾

(
(𝑢𝑡2+2 − 𝑢′𝑡2+1 (𝜆))

2 − (𝑢𝑡2+2 − 𝑢𝑡2+1)2
)
,

where 𝑢′𝑡1 (𝜆) = 𝑢𝑡1 +
𝜆
𝜔𝑡

1

and 𝑢′
𝑡2+1 (𝜆) = 𝑢𝑡2+1 −

𝜆
𝜔𝑡

2
+1
.

Therefore, we see that

𝑑

𝑑𝜆
Υ(𝜆)

����
𝜆=0

+
=

𝑑

𝑑𝜆
(Υ(𝜆) − Υ(0))

����
𝜆=0

+

= 2𝛽

𝑡2∑︁
𝑡=𝑡1

(𝑥𝑡 − 𝑥) + 2𝑢𝑡1 − 2𝑢𝑡2+1 +
2𝛾

𝜔𝑡1
(2𝑢𝑡1 − 𝑢𝑡1−1 − 𝑢𝑡1+1) +

2𝛾

𝜔𝑡2+1
(−2𝑢𝑡2+1 + 𝑢𝑡2 + 𝑢𝑡2+2)

< − 2𝛽𝜁 +
(
2 + 8𝛾

𝜔min

) (
1

𝑟min

− 1

𝑟max

)
≤ 0.

Thus, we know that there exists 𝜆 > 0 such that {𝑥 ′𝑡 (𝜆)}1≤𝑡≤𝑁 is feasible and Υ(𝜆) is less than the total cost of {𝑥𝑡 }1≤𝑡≤𝑁 . Therefore, the
offline optimal trajectory cannot contain a sub-trajectory such that 𝑥𝑡1−1 ≥ 𝑥 − 𝜁 , 𝑥𝑡 < 𝑥 − 𝜁 ,∀𝑡 = 𝑡1, . . . , 𝑡2, and 𝑥𝑡2+1 ≥ 𝑥 − 𝜁 where

1 ≤ 𝑡1 < 𝑡2 < 𝑁 . Using similar techniques, we can extend this claim to include 𝑡2 = 𝑁 and/or 𝑡1 = 𝑡2. Thus, the buffer levels in the offline

optimal trajectory do not go below 𝑥 − 𝜁 . By symmetry, we can show that the offline optimal trajectory also does not exceed 𝑥 + 𝜁 .

D.2 Proof of Lemma A.7
To simplify the notation, we introduce the shorthand

𝑥∗
𝜏 |𝑡 = 𝜓

𝑁
𝑡 ((𝑥𝑡−1, 𝑢𝑡−1);𝜔𝑡 :𝑁 ; 0)𝑥𝜏 , 𝑢

∗
𝜏 |𝑡 = 𝜓

𝑁
𝑡 ((𝑥𝑡−1, 𝑢𝑡−1);𝜔𝑡 :𝑁 ; 0)𝑢𝜏 ,∀𝜏 ≥ 𝑡 .

And we use {(𝑥∗𝑡 , 𝑢∗𝑡)} to denote the offline optimal trajectory.

For time step 𝑡 < 𝑁 − 𝐾 + 1, we see that���𝑥𝑡 −𝜓𝑁𝑡 ((𝑥𝑡−1, 𝑢𝑡−1);𝜔𝑡 :𝑁 ; 0)𝑥𝑡
��� ≤ 𝐶𝜌𝐾 ���𝑥∗𝑡+𝐾 |𝑡 − 𝑥 ��� +𝐶𝜌𝐾−1

����𝑢∗𝑡+𝐾−1 |𝑡 −
1

𝜔𝑡+𝐾−1

���� +𝐶 𝑡+𝐾−1∑︁
𝜏=𝑡

𝜌𝜏−𝑡
��𝜔̂𝜏 |𝑡−1

− 𝜔𝜏
�� + ��𝜔𝑡 − 𝜔̂𝑡 |𝑡−1

��
𝑟min

(32a)

≤ 𝐶𝜌𝐾
(
𝑥max +

1

𝑟min

− 1

𝑟max

)
+𝐶 · 𝐸 (𝑡 − 1, 𝐾) +

��𝜔𝑡 − 𝜔̂𝑡 |𝑡−1

��
𝑟min

, (32b)

641

ACM SIGCOMM ’24, August 4–8, 2024, Sydney, NSW, Australia Chen et al.

where in (32a), we use the facts that

𝑥𝑡 = 𝜓
𝑡+𝐾−1

𝑡

(
(𝑥𝑡−1, 𝑢𝑡−1); 𝜔̂𝑡 :𝑡+𝐾−1 |𝑡−1

; (𝑥, 1

𝜔𝑡+𝐾−1

)
)
𝑥𝑡

+ (𝜔𝑡 − 𝜔̂𝑡 |𝑡−1
)𝑢𝑡 ,

𝜓𝑁𝑡 ((𝑥𝑡−1, 𝑢𝑡−1);𝜔𝑡 :𝑁 ; 0)𝑥𝑡 = 𝜓
𝑁
𝑡

(
(𝑥𝑡−1, 𝑢𝑡−1);𝜔𝑡 :𝑡+𝐾−1; (𝑥∗

𝑡+𝐾 |𝑡 , 𝑢
∗
𝑡+𝐾−1 |𝑡)

)
𝑥𝑡
,

and apply the exponentially decaying perturbation bound. In (32b), we apply the worst-case bound for the first two terms and use the

definition of 𝐸𝑡−1 (𝐾).
Note that we can show (32) also holds for 𝑡 ≥ 𝑁 − 𝐾 + 1 with the same approach.

Similarly, we can show that���𝑢𝑡 −𝜓𝑁𝑡 ((𝑥𝑡−1, 𝑢𝑡−1);𝜔𝑡 :𝑁 ; 0)𝑢𝑡
��� ≤ 𝐶′𝜌𝐾 (

𝑥max +
1

𝑟min

− 1

𝑟max

)
+𝐶′ · 𝐸 (𝑡 − 1, 𝐾). (33)

Combining (32) and (33) finishes the proof of Lemma A.7.

D.3 Proof of Theorem A.8
We first use induction to show that SODA’s entire trajectory satisfies the buffer level constraints strictly. To see this, note that for 𝑡 = 1, we

have ��𝑥1 − 𝑥∗1
�� ≤ 𝑒1 ≤ 𝐶𝜌𝐾

(
𝑥max +

1

𝑟min

− 1

𝑟max

)
+𝐶 · 𝐸 (𝑡 − 1, 𝐾) +

��𝜔𝑡 − 𝜔̂𝑡 |𝑡−1

��
𝑟min

≤ 𝐷

3

.

By Lemma A.6, we know that

��𝑥∗
1
− 𝑥

�� ≤ 𝐷
3
. Thus, we have

|𝑥1 − 𝑥 | ≤
��𝑥1 − 𝑥∗1

�� + ��𝑥∗
1
− 𝑥

�� ≤ 2𝐷

3

.

Therefore, we see that 0 < 𝑥1 < 𝑥max. Supposing that 0 < 𝑥𝜏 < 𝑥max holds for 𝜏 = 1, . . . , 𝑡 − 1, we see that

��𝑥𝑡 − 𝑥∗𝑡 �� + ��𝑢𝑡 − 𝑢∗𝑡 �� ≤ 𝑒𝑡 + (𝐶 +𝐶′) 𝑡−1∑︁
𝜏=1

𝜌𝑡−𝜏𝑒𝜏 (34a)

≤ (1 +𝐶 +𝐶
′)2

1 − 𝜌

(
𝑥max +

1

𝑟min

− 1

𝑟max

)
· 𝜌𝐾 +

(
1 + 1

𝑟min

+𝐶 +𝐶′
)

2 𝑡∑︁
𝜏=1

𝜌𝑡−𝜏𝐸 (𝜏 − 1, 𝐾), (34b)

In (34a), we use (28) in the proof of Lemma A.5. We use Lemma A.7 in (34b).

Thus, we obtain that

��𝑥∗𝑡 − 𝑥𝑡 �� ≤ 𝐷
3
. By Lemma A.6, we see that

|𝑥𝑡 − 𝑥 | ≤
��𝑥𝑡 − 𝑥∗𝑡 �� + ��𝑥∗𝑡 − 𝑥 �� ≤ 2𝐷

3

.

Therefore, we have shown that 0 < 𝑥𝑡 < 𝑥max holds for all time steps 𝑡 by induction.

By (34), we see that

��𝑥𝑡 − 𝑥∗𝑡 ��2 + ��𝑢𝑡 − 𝑢∗𝑡 ��2 ≤
(
1 + 1

𝑟min

+𝐶 +𝐶′
)

4

1 − 𝜌

(
1 + 𝑥max +

1

𝑟min

− 1

𝑟max

)
·(

1

1 − 𝜌

(
𝑥max +

1

𝑟min

− 1

𝑟max

)
· 𝜌2𝐾 +

𝑡∑︁
𝜏=1

𝜌𝑡−𝜏𝐸 (𝜏 − 1, 𝐾)2
)
. (35)

Therefore, by summing (35) over 𝑡 , we obtain that

𝑁∑︁
𝑡=1

(��𝑥𝑡 − 𝑥∗𝑡 ��2 + ��𝑢𝑡 − 𝑢∗𝑡 ��2) ≤
(
1 + 1

𝑟min

+𝐶 +𝐶′
)

4

(1 − 𝜌)2

(
1 + 𝑥max +

1

𝑟min

− 1

𝑟max

)
·
((
𝑥max +

1

𝑟min

− 1

𝑟max

)
· 𝑁𝜌2𝐾 +

𝑁−1∑︁
𝑡=0

𝐸 (𝑡, 𝐾)2
)
. (36)

642

SODA: An Adaptive Bitrate Controller for Consistent High-Quality Video Streaming ACM SIGCOMM ’24, August 4–8, 2024, Sydney, NSW, Australia

By (31), we see that for any 𝜂 > 0, we have

cost(SODA) ≤ (1 + 𝜂)cost(OPT) +
(
1 + 1

𝜂

)
(4𝛾 + 𝛽 + 𝜔max)

𝑁∑︁
𝑡=1

(��𝑥𝑡 − 𝑥∗𝑡 ��2 + ��𝑢𝑡 − 𝑢∗𝑡 ��2)
≤ (1 + 𝜂)cost(OPT) +

(
1 + 1

𝜂

)
(4𝛾 + 𝛽 + 𝜔max)·(

1 + 1

𝑟min

+𝐶 +𝐶′
)

4

(1 − 𝜌)2

(
1 + 𝑥max +

1

𝑟min

− 1

𝑟max

)
·((

𝑥max +
1

𝑟min

− 1

𝑟max

)
· 𝑁𝜌2𝐾 +

𝑁−1∑︁
𝑡=0

𝐸 (𝑡, 𝐾)2
)
.

Note that 𝑁𝜌2𝐾 +∑𝑁−1

𝑡=0
𝐸 (𝑡, 𝐾)2 ≤ 1

1−𝜌 E. Setting

𝜂 =

(
1 + 1

𝑟min

+𝐶 +𝐶′
)

2
(
1 + 𝑥max + 1

𝑟min

− 1

𝑟max

)
(1 − 𝜌)3/2

·
√︁

4𝛾 + 𝛽 + 𝜔max ·

√︄
E

cost(OPT)

finishes the proof.

E PROOFS FOR EFFICIENT STRUCTURES
E.1 Proof of Lemma A.10
We first consider the case when 𝜈𝑡−1 > 1/𝜔̂ . To simplify the notation, we use 𝑢𝑡 :𝑡+𝐾−1 to denote the sequence of control actions in

ˆ𝜙𝑡+𝐾−1

𝑡 ((𝜎𝑡−1, 𝜈𝑡−1); 𝜔̂ ; 0).
We first show that 𝑢𝜏 ≥ 1/𝜔̂ for all 𝜏 ∈ {𝑡, . . . , 𝑡 + 𝐾 − 1}. For the sake of contradiction, let 𝑢𝑡1 be the first action such that 𝑢𝑡1−1 ≥ 1/𝜔̂

and 𝑢𝑡1 < 1/𝜔̂ . Note that resetting the sequence 𝑢𝑡1:𝑡+𝐾−1 to 𝑢𝑡1 = 𝑢𝑡1+1 = · · · = 𝑢𝑡+𝐾−1 = 1/𝜔̂ will strictly decrease the total cost and the

whole sequence remains feasible. This contradicts with the optimality of 𝑢𝑡 :𝑡+𝐾−1. Thus, we have 𝑢𝜏 ≥ 1/𝜔̂ for all 𝜏 ∈ {𝑡, . . . , 𝑡 + 𝐾 − 1}.
We next show that 𝑢𝜏 ≤ 𝜈𝑡−1 for all 𝜏 ∈ {𝑡, . . . , 𝑡 + 𝐾 − 1}. To see this, for all 𝑢𝜏 such that 𝑢𝜏 > 𝜈𝑡−1, we can reset them to 𝑢𝜏 = 𝜈𝑡−1 to

decrease the total switching cost strictly without violating any feasibility constraints.

Since 𝑢𝜏 ∈ [1/𝜔̂, 𝜈𝑡−1] for all 𝜏 ∈ {𝑡, . . . , 𝑡 +𝐾 − 1}, we know that the buffer level sequence is monotonically increasing. Thus, if 𝑢𝑡 :𝑡+𝐾−1 is

not monotonically decreasing, we can permute it to make it monotonically decreasing. This change will strictly decrease the total switching

cost without violating any feasibility constraints. Therefore, we have shown Theorem A.10 holds for the case 𝜈𝑡−1 > 1/𝜔̂ .
Using similar techniques, we can show Lemma A.10 also holds for the case 𝜈𝑡−1 < 1/𝜔̂ and 𝜈𝑡−1 = 1/𝜔̂ .

E.2 Proof of Theorem A.9
We can rewrite the optimization problem (6) as

min

𝑎𝑡 :𝑡+𝐾−1

𝑡+𝐾−1∑︁
𝜏=𝑡

𝛾 · 𝑎2

𝑡

s.t. 𝑥𝜏 = 𝑥𝜏−1 + 𝜔̂𝑢𝜏 − 1, for 𝜏 = 𝑡, . . . , 𝑡 + 𝐾 − 1,

𝑢𝜏 = 𝑢𝜏−1 + 𝑎𝜏 , for 𝜏 = 𝑡, . . . , 𝑡 + 𝐾 − 1,

𝑥𝜏 ∈ [0, 𝑥max], 𝑢𝜏 ∈
[

1

𝑟max

,
1

𝑟min

]
, for 𝜏 = 𝑡, . . . , 𝑡 + 𝐾 − 1,

𝑥𝑡−1 = 𝜎𝑡−1, 𝑢𝑡−1 = 𝜈𝑡−1 . (37)

We use {(𝑎𝜏 , 𝑢𝜏 , 𝑥𝜏)}𝜏=𝑡,...,𝑡+𝐾−1 to denote the optimal solution of (37).

643

ACM SIGCOMM ’24, August 4–8, 2024, Sydney, NSW, Australia Chen et al.

Similarly, we can rewrite the optimization problem
ˆ𝜓𝑡+𝐾−1

𝑡 ((𝜎𝑡−1, 𝜈𝑡−1); 𝜔̂ ; 0) as

min

𝑎𝑡 :𝑡+𝐾−1

𝑡+𝐾−1∑︁
𝜏=𝑡

𝛾 · 𝑎2

𝑡 + 𝜔̂𝑢2

𝑡 + 𝛽𝑏 (𝑥𝑡)

s.t. 𝑥𝜏 = 𝑥𝜏−1 + 𝜔̂𝑢𝜏 − 1, for 𝜏 = 𝑡, . . . , 𝑡 + 𝐾 − 1,

𝑢𝜏 = 𝑢𝜏−1 + 𝑎𝜏 , for 𝜏 = 𝑡, . . . , 𝑡 + 𝐾 − 1,

𝑥𝜏 ∈ [0, 𝑥max], 𝑢𝜏 ∈
[

1

𝑟max

,
1

𝑟min

]
, for 𝜏 = 𝑡, . . . , 𝑡 + 𝐾 − 1,

𝑥𝑡−1 = 𝜎𝑡−1, 𝑢𝑡−1 = 𝜈𝑡−1 . (38)

We use {(𝑎𝜏 , 𝑢𝜏 , 𝑥𝜏)}𝜏=𝑡,...,𝑡+𝐾−1 to denote the optimal solution of (38).

For the sake of contradiction, we assume there exists 𝜏 ∈ {𝑡, 𝑡 + 1, . . . , 𝑡 + 𝐾 − 1} such that��� ˆ𝜓𝑡+𝐾−1

𝑡 ((𝜎𝑡−1, 𝜈𝑡−1); 𝜔̂ ; 0)𝑢𝜏 − ˆ𝜙𝑡+𝐾−1

𝑡 ((𝜎𝑡−1, 𝜈𝑡−1); 𝜔̂ ; 0)𝑢𝜏
��� > 𝜆.

By the strongly convexity of the constrained optimization problem (37), we see that

𝑡+𝐾−1∑︁
𝜏=𝑡

𝛾𝑎2

𝑡 −
𝑡+𝐾−1∑︁
𝜏=𝑡

𝛾𝑎2

𝑡 ≥ 𝛾
𝑡+𝐾−1∑︁
𝜏=𝑡

(𝑎𝑡 − 𝑎𝑡)2 >
𝛾𝜆2

𝐾
. (39)

On the other hand, we have that

𝑡+𝐾−1∑︁
𝜏=𝑡

(
𝜔̂𝑢2

𝑡 + 𝛽𝑏 (𝑥𝑡)
)
−
𝑡+𝐾−1∑︁
𝜏=𝑡

(
𝜔̂𝑢2

𝑡 + 𝛽𝑏 (𝑥𝑡)
)
≥ 𝐾

(
𝜔̂

(
1

𝑟2

max

− 1

𝑟2

min

)
− 𝛽 max{𝑥2, 𝜖 (𝑥max − 𝑥)2}

)
By the optimality of {(𝑎𝜏 , 𝑢𝜏 , 𝑥𝜏)}𝜏=𝑡,...,𝑡+𝐾−1 in (38), we see that

0 ≥
𝑡+𝐾−1∑︁
𝜏=𝑡

(
𝜔̂𝑢2

𝑡 + 𝛽𝑏 (𝑥𝑡) + 𝛾𝑎2

𝑡

)
−
𝑡+𝐾−1∑︁
𝜏=𝑡

(
𝜔̂𝑢2

𝑡 + 𝛽𝑏 (𝑥𝑡) + 𝛾𝑎2

𝑡

)
>
𝛾𝜆2

𝐾
+ 𝐾

(
𝜔̂

(
1

𝑟2

max

− 1

𝑟2

min

)
− 𝛽 max{𝑥2, 𝜖 (𝑥max − 𝑥)2}

)
,

which contradicts our assumption that

𝛾 ≥ 𝐾2

𝜆2

(
𝜔̂

(
1

𝑟2

min

− 1

𝑟2

max

)
+ 𝛽 max{𝑥2, 𝜖 (𝑥max − 𝑥)2}

)
.

644

	Abstract
	1 Introduction
	2 Design Gaps, Opportunities, and Requirements
	3 SODA Overview
	3.1 A Time-Based ABR Formulation
	3.2 Incorporating Throughput Predictions
	3.3 Control Mechanism

	4 Theoretical Design Insights
	4.1 Exact Predictions
	4.2 Inexact Predictions
	4.3 Computational Efficiency

	5 Implementation Details
	5.1 Segment-Based Schema
	5.2 Incorporating Predictions Robustly
	5.3 Efficient Approximate Solver

	6 Evaluation
	6.1 Numerical Simulations
	6.2 Prototype Evaluation
	6.3 Production Deployment

	7 Related Work
	7.1 Adaptive Bitrate Streaming
	7.2 Video Quality of Experience
	7.3 Smoothed Online Convex Optimization

	8 Limitations and Future Work
	9 Conclusion
	Acknowledgments
	A Proof Outline
	A.1 Theoretical Problem Setting
	A.2 Exponentially Decaying Perturbations
	A.3 Proof Outline for Exact Predictions
	A.4 Proof Outline for Inexact Predictions
	A.5 Proof Outline for Efficient Structure

	B Proofs of the Exponentially Decaying Perturbation Bounds
	B.1 Proof of Theorem B.1

	C Proofs for Exact Predictions
	C.1 Proof of Lemma A.4
	C.2 Proof of Lemma A.5
	C.3 Proof of Theorem A.3

	D Proofs for Inexact Predictions
	D.1 Proof of Lemma A.6
	D.2 Proof of Lemma A.7
	D.3 Proof of Theorem A.8

	E Proofs for Efficient Structures
	E.1 Proof of Lemma A.10
	E.2 Proof of Theorem A.9

