Oboe: Auto-tuning Video ABR Algorithms to Network Conditions
Published in ACM SIGCOMM '18, 2018
Abstract: Most content providers are interested in providing good video delivery QoE for all users, not just on average. State-of-the-art ABR algorithms like BOLA and MPC rely on parameters that are sensitive to network conditions, so may perform poorly for some users and/or videos. In this paper, we propose a technique called Oboe to auto-tune these parameters to different network conditions. Oboe pre-computes, for a given ABR algorithm, the best possible parameters for different network conditions, then dynamically adapts the parameters at run-time for the current network conditions. Using testbed experiments, we show that Oboe significantly improves BOLA, MPC, and a commercially deployed ABR. Oboe also betters a recently proposed reinforcement learning based ABR, Pensieve, by 24% on average on a composite QoE metric, in part because it is able to better specialize ABR behavior across different network states.
Zahaib Akhtar, Yun Seong Nam, Ramesh Govindan, Sanjay Rao, Jessica Chen, Ethan Katz-Bassett, Bruno Ribeiro, Jibin Zhan, Hui Zhang.
Download Paper